\(\text{Tìm x; y}\in N:\)
\(10^x:5^y=20^y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y × 4,9 - y ÷ 0,25 = 81,9
y × 4,9 - y ÷ 25/100 = 81,9
y × 4,9 - y × 100/25 = 81,9
y × 4,9 - y × 4 = 81,9
y × (4,9-4) = 81,9
y × 0,9 = 81,9
y = 81,9 ÷ 0,9
y = 91
y × 4,9 - y ÷ 0,25 = 81,9
y × 4,9 - y ÷ 25/100 = 81,9
y × 4,9 - y × 100/25 = 81,9
y × 4,9 - y × 4 = 81,9
y × (4,9-4) = 81,9
y × 0,9 = 81,9
y = 81,9 ÷ 0,9
y = 91
Đặt 2017-x=a; 2019-x=b
\(\Leftrightarrow a+b=4036-2x\)
\(\Leftrightarrow-\left(a+b\right)=2x-4036\)
Phương trình trở thành: \(a^3+b^3-\left(a+b\right)^3=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^3=0\)
\(\Leftrightarrow-3ab\left(a+b\right)=0\)
mà -3<0
nên \(ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(2017-x\right)\left(2019-x\right)\left(4036-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\4036-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
Vậy: S={2017;2018;2019}
Cho \(\left(2017-x\right)^3=x;\left(2019-x\right)^3=y;\left(2x-4036\right)^3=z\)
Ta có: \(x+y+z=0\)
\(=>x+y=-z\) \(=>\left(x+y\right)^3=-z^3\)
Ta có: \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3=-z^3-3xy\left(-z\right)+z^3=3xyz\)
Vì (2017-x)3 + (2019-x)3 + (2x-4036)3 =0
=>\(3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
Gải phương trình được x=2017; x=2019; x=2018
Lời giải:
ĐKXĐ: $x\geq 0$
$\sqrt{x}=\frac{5}{\sqrt{x}+2}$
$\Rightarrow \sqrt{x}(\sqrt{x}+2)=5$
$\Rightarrow x+2\sqrt{x}-5=0$
$\Leftrightarrow (\sqrt{x}+1)^2-6=0$
$\Leftrightarrow (\sqrt{x}+1-\sqrt{6})(\sqrt{x}+1+\sqrt{6})=0$
$\Leftrightarrow \sqrt{x}+1-\sqrt{6}=0$ (do $\sqrt{x}+1+\sqrt{6}>0$)
$\Leftrightarrow \sqrt{x}=\sqrt{6}-1$
$\Leftrightarrow x=7-2\sqrt{6}$ (tm)
a. Theo t/c của dãy tỉ số bằng nhau ta có:
x+y+z/2+3+5=40/10=4
=>x=4.2=8
=>y=4.3=12
=>z=4.5=20
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-3y+2z}{2-3\cdot3+2\cdot5}=\dfrac{9}{-15}=\dfrac{-3}{5}\)
Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{6}{5}\\y=\dfrac{-9}{5}\\z=-3\end{matrix}\right.\)
\(\left|x\right|+3=5\)
\(\left|x\right|=5-3=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
a: TH1: x<-1/2
PT sẽ là -2x-1+3-x=4
=>-3x+2=4
=>-3x=2
=>x=-2/3(nhận)
TH2: -1/2<=x<3
Pt sẽ là 2x+1+3-x=4
=>x+4=4
=>x=0(nhận)
TH3: x>=3
=>x-3+2x+1=4
=>3x-2=4
=>x=2(loại)
b: TH1: x<-3/2
Pt sẽ là -2x-3+3-4x=x
=>-6x=x
=>x=0(loại)
TH2: -3/2<=x<3/4
PT sẽ là 2x+3+3-4x=x
=>-2x+6-x=0
=>-3x=-6
=>x=2(loại)
TH3: x>=3/4
PT sẽ là 2x+3+4x-3=x
=>6x=x
=>x=0(loại)
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)
Do đó: x=18; y=12; z=9
\(\text{méo biết}\)
10x : 5y = 20y
=> 10x = 20y . 5y
=> 10x = 100y
=>10x = 102y
=> x = 2y
Vậy bt thỏa mãn với mọi x = 2y ( x ; y thuộc N )