K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

Câu hỏi của Nguyễn Phan Ngọc Tú - Toán lớp 9 - Học toán với OnlineMath

31 tháng 7 2017

tham khỏa nè:

Câu hỏi của Nguyễn Phan Ngọc Tú - Toán lớp 9 - Học toán với OnlineMath

coppy của thắng 

14 tháng 5 2018

\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}\ge2+x+y+\frac{4}{x+y}+2\)

\(=4+\frac{2}{x+y}+\left(x+y\right)+\frac{2}{x+y}\)\(\ge4+2\sqrt{2}+\frac{2}{x+y}\)

Ta lại có 

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow x+y\le\sqrt{2}\)

Suy ra \(A\ge4+2\sqrt{2}+\frac{2}{\sqrt{2}}=4+3\sqrt{2}\)

Đẳng thức xảy ra <=> \(x=y=\frac{1}{\sqrt{2}}\)

20 tháng 7 2017

Ta có :

\(B=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{2a}=\frac{2}{a}\)

Dấu "=" xảy ra <=> \(x=y=a\)

Vậy \(B_{min}=\frac{2}{a}\) tại \(x=y=a\)

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

21 tháng 1 2019

Ta có:

\(P=\frac{a^2}{x}+\frac{b^2}{y}\)

\(=\frac{a^2\left(x+y\right)}{x}+\frac{b^2\left(x+y\right)}{y}\)

\(=a^2+\frac{a^2y}{x}+b^2+\frac{b^2x}{y}\)

\(=a^2+b^2+\left(\frac{a^2y}{x}+\frac{b^2x}{y}\right)\)

Do \(\frac{a^2y}{x},\frac{b^2x}{y}\)có tích không đổi nên tổng chúng nhỏ nhất.

\(\Leftrightarrow\frac{a^2y}{x}=\frac{b^2x}{y}\)

\(\Leftrightarrow a^2y^2=b^2x^2\)

\(\Leftrightarrow ay=bx\)

\(\Leftrightarrow x=\frac{a}{a+b}\)

\(\Leftrightarrow y=\frac{b}{a+b}\)

Vậy \(P_{MIN}=\left(a+b\right)^2\Leftrightarrow x=\frac{a}{a+b},y=\frac{b}{a+b}\)

21 tháng 1 2019

Áp dụng BĐT Cauchy-schwarz ta có:

\(R=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

=> x=...

     y=...

KL:.....................

Forever Miss You ở đâu có cái tích ko đổi thì tổngnhỏ nhất hay thế?

Gửi link cho a đi~~