cho phương trinh \(x^2+mx+2n+1=\)0 ( x là ẩn:m,n là tham số ). Xác định m và n để phương trình có 2 nghiệm là x1=1; x2=-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ac=-10< 0\Rightarrow\) phương trình luôn có 2 nghiệm pb trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-10\end{matrix}\right.\)
Kết hợp hệ thức Viet và đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1-x_2=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-m+8}{2}\\x_2=\dfrac{-m-8}{2}\end{matrix}\right.\)
Thế vào \(x_1x_2=-10\)
\(\Rightarrow\left(\dfrac{-m+8}{2}\right)\left(\dfrac{-m-8}{2}\right)=-10\)
\(\Leftrightarrow m^2-64=-40\Rightarrow m^2=24\)
\(\Rightarrow m=\pm2\sqrt{6}\)
a: khi m=1 thì pt sẽ là:
x^2-4x-5=0
=>x=5; x=-1
b: |x1|-|x2|=-2022
=>x1^2+x2^2-2|x1x2|=2022^2
=>(x1+x2)^2-2x1x2-2|x1x2|=2022^2
=>(2m+2)^2-2|-5|-2*(-5)=2022^2
=>(2m+2)^2=2022^2
=>2m+2=2022 hoặc 2m+2=-2022
=>m=1010 hoặc m=-1012
a: Thay m=1 vào pt, ta được:
\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
b: \(\text{Δ}=\left(-m\right)^2-4\left(2m-4\right)\)
\(=m^2-8m+16\)
\(=\left(m-4\right)^2\)
Để phươg trình có hai nghiệm phân biệt thì m-4<>0
hay m<>4
Theo đề, ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(-m\right)^2-2\left(2m-4\right)\)
\(=m^2-4m+8\)
\(=\left(m-2\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi m=2