K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

PTHĐGĐ là:

x^2-(m-2)x-3=0

a*c<0

=>(P) luôn cắt (d) tại hai điểm pb

Theo đề, ta có: 3x2=-x1 và x1+x2=m-2

=>x1+3x2=0 và x1+x2=m-2

=>2x2=-m+2 và 3x2=-x1

=>x2=-1/2m+1 và x1=-3x2=3/2m-3

x1x2=-3

=>-1/2(m-2)*3/2(m-2)=-3

=>3/4(m-2)^2=3

=>(m-2)^2=4

=>m=4 hoặc m=0

8 tháng 5 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-\left(m-2\right)x-3=0\)

\(\Delta=\left(m-2\right)^2-4\left(-3\right)=\left(m-2\right)^2+12>0\)

Vậy (P) cắt (d) tại 2 điểm pb 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m-2\left(1\right)\\x_1x_2=-3\left(2\right)\end{matrix}\right.\)

Vì \(x_1x_2=-3< 0\)nên pt có 2 nghiệm trái dấu 

đk : \(\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)

\(-x_1=3x_2\Leftrightarrow x_1+3x_2=0\)(3) 

Từ (1) ; (3) \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1+3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_2=-\left(m-2\right)\\x_1=m-2-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-\left(m-2\right)}{2}\\x_1=\dfrac{2m-4+m-2}{2}=\dfrac{3m-6}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(\dfrac{-3\left(m-2\right)^2}{4}=-3\Leftrightarrow\left(m-2\right)^2=4\Leftrightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)

 

 

PTHĐGĐ là;

x^2-6x+m-3=0

Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48

Để PT có hai nghiệm phân biệt thì -4m+48>0

=>m<12

(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2

=>(x1-1)(-x1x2+x2+x1x2-1)=2

=>x1x2-(x1+x2)+1=2

=>m-3-6+1=2

=>m-8=2

=>m=10

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

Phương trình hoành độ giao điểm là:

\(x^2-mx+2m-4=0\)

\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16=\left(m-4\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0

hay m<>4

Ta có: \(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=m^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

PTHĐGĐ là:

mx^2-2(m-2)x-m+3=0

Để (d) cắt (P) tại hai điểm phân biệt trái dấu thì m(-m+3)<0

=>m(m-3)>0

=>m>3 hoặc m<0

a: PTHĐGĐ là:

x^2-2x-|m|-1=0

a*c=-|m|-1<0

=>(d)luôn cắt (P) tại hai điểm phân biệt

b: Bạn bổ sung lại đề đi bạn

5 tháng 8 2021

Phương trình hoành độ giao điểm:

`mx-3=x^2`

`<=>x^2-mx+3=0` (1)

(P) cắt (d) tại 2 điểm phân biệt `<=>` PT (1) có 2 nghiệm phân biệt.

`<=> \Delta >0`

`<=>m^2-3>0`

`<=> m<-\sqrt3 \vee m>\sqrt3`

Viet: `{(x_1+x_2=m),(x_1x_2=3):}`

`|x_1-x_2|=2`

`<=>(x_1-x_2)^2=4`

`<=> (x_1+x_2)^2-4x_1x_2=4`

`<=>m^2-4.3=4`

`<=>m= \pm 4` (TM)

Vậy....