K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2022

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{x+y}{xy}=\dfrac{1}{x+y+z}-\dfrac{1}{z}\Leftrightarrow\dfrac{x+y}{xy}=\dfrac{-(x+y)}{(x+y+z).z}\)

\(\Leftrightarrow(x+y)\left(\dfrac{1}{xy}+\dfrac{1}{\left(x+y+z\right).z}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\left(1\right)\\\dfrac{1}{xy}+\dfrac{1}{(x+y+z).z}=0\left(2\right)\end{matrix}\right.\)

Khi đó (2) \(\Leftrightarrow\dfrac{1}{xy}=\dfrac{-1}{(x+y+z).z}\) 

\(\Leftrightarrow xy=-(x+y+z).z\)

<=> xy + xz + yz + z2 = 0

<=> (y + z)(x + z) = 0

<=> \(\left[{}\begin{matrix}y+z=0\\x+z=0\end{matrix}\right.\)

Với x + y = 0 <=> x = -y <=> x2021 = - y2021 

<=> \(\dfrac{1}{x^{2021}}+\dfrac{1}{y^{2021}}=0\Leftrightarrow\dfrac{1}{x^{2021}}+\dfrac{1}{y^{2021}}+\dfrac{1}{z^{2021}}=\dfrac{1}{z^{2021}}\) (4)

Khi đó \(\dfrac{1}{x^{2021}+y^{2021}+z^{2021}}=\dfrac{1}{z^{2021}}\) (5) 

Từ (4) (5) => đpcm

Tương tự với 2 trường hợp còn lại => ĐPCM

20 tháng 3 2016

x+y+z=0

=>x+y=-z

=>y+z=-x

=>z+x=-y

(1+x/y)(1+y/z)(1+z/x)

(y+x/y)(z+y/z)(x+z/x)

-z/y.-x/z.-y/x

=-1

21 tháng 10 2018

\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\)

\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

 Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

  \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}\)

Do x, y, z \(\ne\)\(\Rightarrow\frac{x+y+z}{y+z+x}=1\)

                          \(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\\\frac{y}{z}=1\\\frac{z}{x}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)

\(\Rightarrow\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(3x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{3^{999}.x^{999}}{x^{999}}=3^{999}\)

Vậy.............

21 tháng 10 2018

Giả sử một trong 3 số x, y, z bằng 0 thì ta chứng minh được hai số còn lại bằng 0 (trái với x + y + z ≠ 0)

Do đó x, y, z khác 0

Ta có: \(x^2=yz\Leftrightarrow z=\frac{x^2}{y}\left(1\right)\)

\(y^2=xz\Leftrightarrow z=\frac{y^2}{x}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x^2}{y}=\frac{y^2}{x}\Leftrightarrow x^3=y^3\Leftrightarrow x=y\)

Thay x = y vào \(x^2=yz\Rightarrow y^2=yz\Leftrightarrow y^2-yz=0\Leftrightarrow y\left(y-z\right)=0\)

=> y = 0 hoặc y - z = 0

Do y khác 0 nên y - z = 0 <=> y = z <=> x = y = z

Thay x = y = z vào A ta có:

\(A=\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(x+x+x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{\left(3x\right)^{999}}{x^{999}}=\frac{3^{999}x^{999}}{x^{999}}=3^{999}\)

17 tháng 12 2018

nhanh nhanh các bạn cần gấp