Với x ≥ 0 ; x ≠ 9. Cho P=\(\dfrac{\sqrt{x}+3}{\sqrt{x}+8}\)
a. So sánh P với 1, so sánh P với 2
b. Với x ≥ 0 ; x ≠ 9. Chứng minh P>P2
c. Tìm x để 2P2<P
Mong các bạn giúp
Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
Ta cần chứng minh
\(x+\frac{27}{\left(x+3\right)^3}\ge1\)
\(\Leftrightarrow x+\frac{27}{\left(x+3\right)^3}-1\ge0\)
\(\Leftrightarrow x^4+8x^3+18x^2\ge0\)
Theo đề bài ta có: \(x\ge0\Rightarrow\left\{\begin{matrix}x^4\ge0\\8x^3\ge0\\18x^2\ge0\end{matrix}\right.\)
\(\Rightarrow x^4+8x^3+18x^2\ge0\)
Vậy ta có điều phải chứng minh. Dấu = xảy ra khi x = 0
2/ \(P=x+\frac{2}{2x+1}\)
\(\Leftrightarrow2P=2x+\frac{4}{2x+1}=2x+1+\frac{4}{2x+1}-1\)
\(\ge4-1=3\)
\(\Rightarrow P\ge\frac{3}{2}\)
Vậy GTNN là \(\frac{3}{2}\) đạt được khi x = \(\frac{1}{2}\)
a , Ta có \(x^2+x+1=x^2+2x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\)\(\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}>0\left(đpcm\right)\)
b , Ta có : \(4x^2-2x+3\)= \(\left(2x\right)^2-2.2x.1+1^2+2\) = \(\left(2x-1\right)^2+2\ge2>0\left(đpcm\right)\)
c , Ta có \(3x^2+2x+1=x^2-\frac{2x}{3}+\frac{1}{9}+2x^2+\frac{8x}{3}+\frac{8}{9}\)
= \(\left(x-\frac{1}{3}\right)^2+2\left(x^2+\frac{4x}{3}+\frac{4}{9}\right)=\left(x-\frac{1}{3}\right)^2+2\left(x+\frac{2}{3}\right)^2\ge0\)
Vì Dấu "=" không thể xảy ra , do đó \(3x^2+2x+1>0\left(đpcm\right)\)
Ta có : x2 + 2x + 2
= x2 + 2x + 1 + 1
= (x + 1)2 + 1 \(\ge1\forall x\)
Vậy x2 + 2x + 2 \(>0\forall x\)
Ta có : x2 + 2x + 2
=> x2 + 2x + 1 + 1
=> ( x + 1)2 + 1 > 1\(\forall x\)
Vậy x2 + 2x + 2 > \(0\forall x\)
a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)
Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow\left(x-10\right)^2+1>1>0\)
Vậy x2-20x+101 >0 với mọi x
b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)
Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)
\(\Rightarrow\left(2a+1\right)^2+1>1>0\)
Vậy 4a2+4a+2 > 0 với mọi a
c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)
\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)
\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)
a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)
Ta có : 4x2 + 2x + 1
= (2x)2 + 2.2x.\(\frac{1}{2}\) + \(\frac{1}{2}+\frac{3}{4}\)
= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)
Mà : (2x + \(\frac{1}{2}\))2 \(\ge0\forall x\)
=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)
Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(>0\forall x\)
Vậy 4x2 + 2x + 1 \(>0\forall x\)
a: |x|<a
=>x^2<a^2
=>-a<x<a
b: |x|>a
=>x^2>a^2
=>x>a hoặc x<-a
a) P < 1; P < 2
b) P < 1 --> P(1 - P) > 0
--> P > P^2