\(\dfrac{\sqrt{x}+3}{\sqrt{x}+8}\)

a. So sánh P với 1, so...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Câu2 : <=> 2x4-2x2+5x5-5=0
<=>2x2(x2-1)+5(x2-1)=0

<=>(2x2+5)(x-1)(x+1)=0

<=> x={+-1 } vì 2x2+5>0 mọi x

12 tháng 5 2018

Câu 2:<=>3x3-3x2+13x2-13x=0 <=> 3x2(x-1)+13x(x-1)=0 <=> x(3x2+13)(x-1)=0 <=>x={0;1) vì 3x2+13>0 mọi X

a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)

\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)

b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)

\(=\dfrac{x^2}{y}\cdot y-x^2=0\)

 

20 tháng 5 2019

a) \(2\sqrt{x^2}=2.\left|x\right|=-2x\)(vì x<0)

b) \(\frac{1}{2}\sqrt{x^{10}}=\frac{1}{2}\sqrt{\left(x^5\right)^2}\frac{1}{2}\left|x^5\right|=-\frac{1}{2}x^5\)(vì x>0)

c) \(x-4+\sqrt{x^2-8x+16}=x-4+\sqrt{\left(x-4\right)^2}=x-4+\left|x-4\right|=x-4+4-x=0\)(vì x<4 nên x-4<0)

d) \(\frac{3-\sqrt{x}}{x-9}=\frac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{-1}{\sqrt{x}+3}\)

22 tháng 5 2019

điều kiện câu b của bạn nghi nhầm kià

a,ta có:(x2+7x+3)2=x4+14x3+55x2+42x+9(8x+4)(x2+5x+2)=8x3+44x2+36x+8=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8<=>x4+6x3+11x2+6x+1=0xét x=0 ko phải no của ptxét x khác 0\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)d,xét n=1=> mệnh đề luôn đúnggiả sử mệnh đề...
Đọc tiếp

a,

ta có:

(x2+7x+3)2=x4+14x3+55x2+42x+9

(8x+4)(x2+5x+2)=8x3+44x2+36x+8

=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8

<=>x4+6x3+11x2+6x+1=0

xét x=0 ko phải no của pt

xét x khác 0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)

d,

xét n=1=> mệnh đề luôn đúng

giả sử mệnh đề đúng với n=k

ta sẽ cm nó đúng với n=k+1

với n=k+1

=>(n+1)(n+2)..(n+n)=2n(n+1)(n+2)...(2n-1)

=2(k+1)(k+2).....2k chia hết cho 2k+1

=>(n+1)(n+2)(n+3)...(n+n) chia hết cho 2n

c,

ta có:

\(\left(1+x\right)\left(1+\frac{y}{x}\right)=1+x+y+\frac{y}{x}\ge1+y+2\sqrt{y}=\left(\sqrt{y}+1\right)^2\)

\(\Rightarrow\left(1+x\right)\left(1+\frac{y}{x}\right)\left(1+\frac{9}{\sqrt{y}}\right)^2\ge\left[\left(\sqrt{y}+1\right)\left(1+\frac{9}{\sqrt{y}}\right)\right]^2\)

\(=\left(\sqrt{y}+\frac{9}{\sqrt{y}}+10\right)^2\ge\left(6+10\right)^2=256\left(Q.E.D\right)\)

dấu = xảy ra khi y=9;x=3

b,

x7+xy6=y14+y8

<=>(x7-y14)+(xy6-y8)=0

<=>(x-y2)(x+y2)+y6(x-y2)=0

<=>(x-y2)(x+y2+y6)=0

xét x=y2

\(\Rightarrow\sqrt{4x+5}+\sqrt{y^2+8}=\sqrt{4y^2+5}+\sqrt{y^2-1}\)

\(\Rightarrow\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

\(\Rightarrow\left(\sqrt{4y^2+5}-3\right)+\left(\sqrt{y^2+8}-3\right)=0\)

\(\Rightarrow\frac{4y^2-4}{\sqrt{4y^2+5}+3}+\frac{y^2-1}{\sqrt{y^2+8}+3}=0\)

\(\Rightarrow\left(y^2-1\right)\left(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}\right)=0\)

\(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}>0\Rightarrow y^2=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right)\)

xét x+y2+y6=0

<=>x=-y2-y6

lại có:

x7+xy6=y14+y8

<=>x(x6+y6)=y14+y8

<=>-(y2+y6)(x6+y6)=y14+y8

mà \(-\left(y^2+y^6\right)\left(x^6+y^6\right)\le0\le y^{14}+y^8\)

<=>y=0=>x=0(ko thỏa mãn)

vậy nghiệm của pt:(x;y)=(1;-1);(1;1)

1
14 tháng 10 2017

câu hệ sao từ x^7-y^14 sao xuống đc (x-y^2)(x+y^2) ? 

27 tháng 8 2016

Ta có: 

\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(1-x\right)^2}{2}\)

\(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)

\(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2}{2}\)

\(P=\left(-\sqrt{x}\right)\left(\sqrt{x}-1\right)\)

\(P=\sqrt{x}-x\)

b) Để \(P>0\) thì \(\sqrt{x}-x>0\)

  • \(\sqrt{x}-x>0\)

   \(\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)

Suy ra: TH1\(\sqrt{x}< 0\) và \(1-\sqrt{x}< 0\) (Loại) vì \(\sqrt{x}\ge0\)

            TH2:\(\sqrt{x}>0\)  và \(1-\sqrt{x}>0\) (Nhận)

Ta có \(\sqrt{x}>0\) và \(1-\sqrt{x}>0\) để \(P>0\)

  • \(\sqrt{x}>0\) \(\Rightarrow x>0\)
  • \(1-\sqrt{x}>0\) \(\Rightarrow\sqrt{x}< 1\) \(\Rightarrow x< 1\)

Vậy để \(P>0\) thì \(0< x< 1\)

c)\(P=\sqrt{x}-x\)

\(P=-\left(x-\sqrt{x}\right)\)

\(P=-\left(\left(\sqrt{x}\right)^2-2.\frac{1}{2}.\sqrt{x}+\frac{1}{4}-\frac{1}{4}\right)\)

\(P=-\left(\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\right)\)

\(P=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\)

Nên \(-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra khi \(\sqrt{x}-\frac{1}{2}=0\) \(\Rightarrow x=\frac{1}{4}\)

Vậy GTLN của \(P\) là \(\frac{1}{4}\) khi \(x=\frac{1}{4}\)

 

 

 

 

 

 

27 tháng 2 2022

Trả lời:

a, \(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\left(ĐK:x>0;x\ne1\right)\)

\(=\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(x+\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(x+2\sqrt{x}-\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left[\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)\right]\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\) (đpcm)

b, \(2P=2\sqrt{x}+5\Leftrightarrow\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}}=2\sqrt{x}+5\) \(\left(ĐK:x>0\right)\)

\(\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\)

\(\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=\frac{2x}{\sqrt{x}}+\frac{5\sqrt{x}}{\sqrt{x}}\)

\(\Rightarrow2\sqrt{x}+2=2x+5\sqrt{x}\)

\(\Leftrightarrow2x+3\sqrt{x}-2=0\)

\(\Leftrightarrow2x+4\sqrt{x}-\sqrt{x}-2=0\)

\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=0\\2\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-2\left(voli\right)\\2\sqrt{x}=1\end{cases}\Leftrightarrow}\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(tm\right)}\)

Vậy x = 1/4 là giá trị cần tìm.

4 tháng 8 2017

b) \(B=\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-\dfrac{x\sqrt{x}}{\sqrt{x}}=\dfrac{\sqrt{x}\left(x-\sqrt{x}\right)-x\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\) = \(\dfrac{x\sqrt{x}-x-x\sqrt{x}+x^2}{\sqrt{x}-x}=\dfrac{x^2-x}{\sqrt{x}-x}\)

c) \(C=\dfrac{x+2\sqrt{x}}{\sqrt{x}-x}-\dfrac{x\sqrt{x}}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)-x\sqrt{x}\left(\sqrt{x}-x\right)}{\left(\sqrt{x}-x\right)\left(\sqrt{x}+1\right)}=x+2\sqrt{x}-x\sqrt{x}\)

\(d,D=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\) \(\dfrac{\left(x+2\sqrt{x}\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+7\sqrt{x}-2}{\sqrt{x}+2}\)

e) \(E=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{2\sqrt{x}-24}{\sqrt{x}+3}\)

F) F = \(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}=\dfrac{3\left(\sqrt{x}-5\right)+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{23-2\sqrt{x}}{\sqrt{x}+5}\)

4 tháng 8 2017

thanks p.... sorry mk chép nhầm đề câu e.

E= \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)+ \(\dfrac{2\sqrt{x}-24}{x-9}\)( x>0; x#9)