Cho tam giác ABC vuông cân tại A. Trên tia đối của tia CA lấy điểm F; trên tia đối của tia AB lấy điểm E sao cho BE = CF. Vẽ hình bình hành BEFD. a) Chứng minh DC ⊥ BC. b) Gọi I là giao EF và BC. Chứng minh AI = 1 2 DB. c) Qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. Chứng minh MICF là hình thang cân. d) Tìm vị trí của E trên AB để A, I, D thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: Xét ΔEHB vuông tại H và ΔFKC vuông tại K có
EB=FC
góc EBH=góc FCK
=>ΔEHB=ΔFKC
=>EH=FK
d: Xét ΔABH và ΔACK có
AB=AC
góc ABH=góc ACK
BH=CK
=>ΔABH=ΔACK
=>AH=AK
=>ΔAHK cân tại A
mà AM là đường cao
nên AM là phân giác của góc HAK
e: Xét ΔAHE và ΔAKF có
AH=AK
góc AHE=góc AKF
HE=KF
=>ΔAHE=ΔAKF
a,Ta có:
\(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung
\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )
b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:
AH = HM (gt)
\(\widehat{AHC}\)= \(\widehat{MHC}\)(= 90 độ)
HC : cạnh chung
\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)
\(\Rightarrow\)AC=CM ( t/ứ)
Mà AC = CN (gt) và CM = AC (cmt)
nên CM = CN
\(\Rightarrow\Delta CMN\)cân
1Tại sao lại B=2D,mà chưa hề có điểm B trong đề
2aDo tam giác ABC cân đỉnh A=>góc ABC=góc ACB
=>góc ABM=góc ACN(góc ABM+góc ABC=góc ACN+GÓC ACB)
2bTa có:góc ABM=góc ACN(CMT).
Xét tam giác ABM và tam giác ACN.Bạn tự chứng minh có bằng nhau(c.g.c)
=>AM=AN=>AMN là tam giác cân
3aDo tam giác ABC cân=>góc ABC=góc ACB
Xét hai tam giác vuông HBD và KCE(Cạnh huyền-Góc nhọn).Bạn tự chứng minh.=>HB=CK
3bDo tam giác ABC cân=>góc ABC=góc ACB=>góc ABH=góc ACK
Bạn tự chứng minh hai tam giác AHB và AKC bằng nhau(c.g.c).Nhớ phải sử dung HB=CK
3cTôi không hiểu đề
~`!@#$%^&*()_-+=|\{[}]''":;>.<,?/
tớ chịu đầu hàng ?!
*_* ! soryyy