Cho phương trình: 2x2 – 4x + m – 5 = 0 (x là ẩn số; m ,n là tham số). Xác định m và n để phương trình có hai nghiệm là: x1 = 1 và x2 = -2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Δ=(-4)^2-4*2*(m-5)
=16-8(m-5)=16-8m+40=-8m+56
Để phương trình có nghiệm kép thì 56-8m=0
=>m=7
=>2x^2-4x+2=0
=>x^2-2x+1=0
=>x=1
Ta có: \(\Delta'=2>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-\dfrac{1}{2}\end{matrix}\right.\)
Mặt khác: \(2x_1^2+4mx_2+2m^2-9< 0\)
\(\Rightarrow2x_1^2+\left(2x_1+2x_2\right)x_2+2m^2-9< 0\)
\(\Leftrightarrow2\left(x_1^2+x_2^2\right)+2x_1x_2+2m^2-9< 0\)
\(\Leftrightarrow2\left(x_1+x_2\right)^2-2x_1x_2+2m^2-9< 0\)
\(\Rightarrow8m^2-2\left(m^2-\dfrac{1}{2}\right)+2m^2-9< 0\)
\(\Leftrightarrow-\dfrac{\sqrt{5}}{2}< m< \dfrac{\sqrt{5}}{2}\)
Vậy ...
Cách này nhanh hơn này,với cả dòng tương tương thứ nhất you vt sai dấu của 2m2
Do \(x_1\) là nghiệm của pt => \(2x_1^2-4mx_1+2m^2-1=0\)
\(\Leftrightarrow2x_1^2+2m^2-9=4mx_1-8\)
\(2x_1^2+4mx_2+2m^2-9< 0\)
\(\Leftrightarrow4mx_1-8+4mx_2< 0\)
\(\Leftrightarrow4m.2m-8< 0\)
\(\Leftrightarrow-1< m< 1\)
Phương trình đã cho có hai nghiệm khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 m + 4 ≥ 0 ⇔ m ≤ 2 1 .
Theo hệ thức Vi-ét: x 1 + x 2 = 2 m − 1 x 1 . x 2 = m 2 − 3
Mà x 1 2 + 4 x 1 + 2 x 2 − 2 m x 1 = 1 ⇔ x 1 x 1 − 2 m + 2 + 2 x 1 + x 2 = 1 ⇔ − x 1 . x 2 + 2 x 1 + x 2 = 1 ⇔ − m 2 + 3 + 4 m − 1 = 1 ⇔ m 2 − 4 m + 2 = 0 ⇔ m = 2 + 2 m = 2 − 2 2
Từ (1) và (2) suy ra m = 2 − 2
Sửa đề; Tìm m Để cho phương trình có nghiệm không âm
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
=>\(2x^2-2x+mx-m-2x^2+mx+m-2=0\)
=>x(2m-2)-2=0
=>x(2m-2)=2
Để phương trình có nghiệm không âm thì 2m-2<0
=>m<1
Câu 1: Phương trình nào sau đây là phương trình bậc nhất một ẩn?
A. 1 /x + 2 =0 B. 0 * x - 5 = 0 C. 2x2 + 3 = 0 D. –x = 1
x1+x2=2
mà 1-2=-1
nên không có m,n thỏa mãn