Đường thẳng d cắt (O;R) ở P,Q (d không qua O) . Lấy M ∈ tia đối tia PQ ; kẻ MA , MB là các tiếp tuyến của (O) (A,B ∈ O) . AB cắt OM tại I và cắt d tại K . Gọi H là trung điểm của PQ . CMR : a) MA2 = MI = MO
b) O I. OM = R2
c) KM . KH = MB2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\widehat{IBA}+\widehat{ICB}=90^o\)
\(\widehat{IAB}+\widehat{IAO}+\widehat{OAC}=180^o\)mà \(\widehat{IAO}=90^o\)\(\Rightarrow\widehat{IAB}+\widehat{OAC}=90^o\)
Mà \(OA=OC\Rightarrow\)\(\Delta OAC\)cân tại O \(\Rightarrow\widehat{OCA}=\widehat{OAC}\)
Từ đó suy ra \(\widehat{IAB}=\widehat{IBA}\Rightarrow\Delta IAB\)cân tại I
\(\Rightarrow IA=IB\)
a: Xét ΔOAM vuông tại A vầ ΔOBP vuông tại B có
OA=OB
góc AOM=góc BOP
Do đó: ΔOAM=ΔOBP
=>OM=OP
Xét ΔNMP có
NO vừa là đường cao, vừa là trung tuyến
nên ΔNMP cân tại N
b: góc NMO=góc NPO
=>góc NMO=góc AMO
Xét ΔMAO và ΔMIO có
MO chung
góc AMO=góc IMO
Do đo: ΔMAO=ΔMIO
=>OI=OA=R
=>MN là tiếp tuyến của (O)