Cho tam giác ABC cân tại A. Gọi D là trung điểm của cạnh BC. Kẻ DE vuông góc với AB; kẻ DF vuông góc với AC
Chứng minh rằng:
a)tam giác DEB = tâm giác DFC. b) tam giác AED= tam giác AFD
c) AD là tiaphân giác của BAC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
a, xét tam giác DEB và tam giác DFC có : góc BED = góc DFC = 90
BD = DF do D là trung điểm của BC (gt)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> tam giác DEB = tam giác DFC (ch-gn)
b, tam giác DEB = tam giác DFC (Câu a)
=> DE = DF (đn)
xét tam giác ADE và tam giác ADF có : AD chung
góc AED = tam giác AFD = 90
=> tam giác ADE = tam giác ADF (ch-cgv)
c, tam giác ADE = tam giác ADF (câu b)
=> góc BAD = góc CAD (đn)
AD nằm giữa AB và AC
=> AD là phân giác của góc BAC (Đn)
( Hình vẽ không được chính xác lắm mong bạn thông cảm )
a) Ta có \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) ( tính chất )
Do \(D\) là trung điểm của BC
\(\Rightarrow BD=CD=\frac{BC}{2}\)
Xét \(\Delta DEB\) và \(\Delta DFC\) có :
\(\hept{\begin{cases}\widehat{DEB}=\widehat{DFC}\left(=90^o\right)\\BD=CD\left(cmt\right)\\\widehat{EBD}=\widehat{FCD}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\)\(\Delta DEB\)\(=\)\(\Delta DFC\) ( cạnh huyền - góc nhọn )
b) Do \(\Delta DEB=\Delta DFC\left(cmt\right)\)
\(\Rightarrow DE=DF\)
Xét \(\Delta AED\) và \(\Delta AFD\) có :
\(\hept{\begin{cases}\widehat{DEA}=\widehat{DFA}\left(=90^o\right)\\ADchung\\DE=DF\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta AED=\Delta AFD\) ( cạnh huyền - cạnh góc vuông )
c) Từ \(\Rightarrow\Delta AED=\Delta AFD\) (cmt)
\(\Rightarrow\widehat{EAD}=\widehat{FAD}\Rightarrow\widehat{BAD}=\widehat{CAD}\)
\(\Rightarrow AD\) là tia phân giác của \(\widehat{BAC}\)