Hình chóp tam giác đều SABC có đáy là tam giác đều ABC, AB = a; góc giữa cạnh bên và mặt đáy bằng 45°. Tính thể tích V của hình chóp.
A. V = a 3 12
B. V = a 3 2 24
C. V = a 3 3 16
D. V = a 3 6 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi H là trung điểm AB. Ta có 2 tam giác SAB và ABC đều và bằng nhau nên SH = CH= a 3 . Mà S Δ A B C = a 2 3 ⇒ V S . A B C = 1 3 a 2 3 . a 3 = a 3
Đáp án là B.
V S . A B C = 1 3 S A . S Δ A B C = 1 3 . a 3 . a 2 3 4 = a 3 4 .
Gọi H là chiều dài vuông góc của S trên BC.
(SBC)_I_(ABC)
(SBC) \(\cap\) (ABC) = BC
SH \(\subset\) (SBC)
SH _I_ BC
SH là đường cao hình chóp S.ABC
.Ta có : SH = SB sinSBC = \(a\sqrt{3}\)
S.ABC = 1/2 BA . BC
V.S.ABC = 1/3 SH . S.ABC 2a3\(\sqrt{3}\)
Đáp án A