Cho tam giác ABC, biết \(\dfrac{a+b}{a+c}=2cosB-1\) ; góc A=600. Tính góc B,C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài làm ở link này nhé!
\(\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{b+c}{5}\\\dfrac{a+b}{6}=\dfrac{c+a}{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{a}{2}\\c=\dfrac{3a}{4}\end{matrix}\right.\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\dfrac{a^2}{4}+\dfrac{9a^2}{16}-a^2}{2.\dfrac{a}{2}.\dfrac{3a}{4}}=-\dfrac{1}{4}\)
\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+\dfrac{9a^2}{16}-\dfrac{a^2}{4}}{2a.\dfrac{3a}{4}}=\dfrac{7}{8}\)
\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{11}{16}\)
\(P=-\dfrac{1}{4}+\dfrac{14}{8}+\dfrac{44}{16}=\dfrac{17}{4}\)
a: \(\widehat{C}=180^0-40^0-80^0=60^0\)
b: \(\dfrac{S_{ABC}}{S_{A'B'C'}}=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
\(\overrightarrow{BA}=\left(3;0\right)\Rightarrow AB=3=AC\) ; \(\overrightarrow{AC}=\left(a-2;b+2\right)\) ; \(\overrightarrow{BC}=\left(a+1;b+2\right)\)
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=\dfrac{6\sqrt{5}}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b+2\right)^2=9\\\left(a+1\right)^2+\left(b+2\right)^2=\dfrac{36}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(\dfrac{1}{5};-\dfrac{22}{5}\right)\\\left(a;b\right)=\left(\dfrac{1}{5};\dfrac{2}{5}\right)\end{matrix}\right.\)