Tìm 3 số a; b; c biết : \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\) và a2 + 275 = bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


12=22.3, 18=2.32, 27=33 nên BCNN(12,18,27)=22.33=108
a) Gọi x là số có 3 chữ số lớn nhất cần tìm, suy ra x chia hết cho 108
Suy ra x=108.k. Vì x có 3 chữ số nên x=108.k<1000 suy ra k lớn nhất là 9.
Vậy x=9.108=972
b) Gọi y là số có 4 chữ số cần tìm, suy ra y chia 108 dư 1
Suy ra y=108k+1. Vì y có 4 chữ số nên y=108k+1>999 suy ra k nhỏ nhất là 10.
Vậy y=10.108+1=1081
c) Gọi a là số 4 chữ số cần tìm, suy ra a=12k+10
suy ra a-16=12k-6=6(2k-1) chia hết cho 18. Suy ra 2k-1 chia hết cho 3.
Suy ra 2k-1-3=2(k-2) chia hết cho 3. Suy ra k=3m+2 nên a=12(3m+2)+10=36m+34
Lại có a-25=36m+9=9(4m+1) chia hết cho 27 nên 4m+1 chia hết cho 3
suy ra m+1 chia hết cho 3, suy ra m=3n+2. Suy ra a=36(3n+2)+34=108n+106
Vì a có 4 chữ số nên a=108n+106>999, suy ra n nhỏ nhất là 9.
Vậy a=108.9+106=1078
Gọi \(M=\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(M=\frac{5\left(3a-2b\right)}{25}=\frac{3\left(2c-5a\right)}{9}=\frac{2\left(5b-3c\right)}{4}\)
Áp dụng TC Dãy tỉ số bằng nhau:
\(M=\frac{5\left(3a-2b\right)+3\left(2c-5a\right)+2\left(5b-3c\right)}{25+9+4}\)
\(M=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}\)
\(M=\frac{0}{25+9+4}=0\)
\(\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\Leftrightarrow\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\Rightarrow}\frac{a}{2}=\frac{b}{3}=\frac{c}{5}}\)
gọi \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=x\Rightarrow\hept{\begin{cases}a=2x\\b=3x\\c=5x\end{cases}}\)
thay vào \(a^2+275=bc\)
\(\left(2x\right)^2+275=3x.5x\)
\(4x^2+275=15x^2\)
\(275=11x^2\)
\(x^2=25\)
Vậy \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
=> \(\hept{\begin{cases}a=10\\b=15\\c=25\end{cases}}\)hoặc \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
Xong :>
P/S: Dấu ngoặc vuông kí hiệu cho "hoặc", ngoặc nhọn kí hiệu cho "và"
Thanks bạn