Cho cấp số cộng (un); công sai d. Biết u1 + u4 + u7 + u10 + u13 + u16 = 147. Tính u1 + u6 + u11 + u16
A. 49
B. 98
C. 196
D. tất cả sai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(u_5=18\Rightarrow u_1+4d=18\) (1)
\(4S_n=S_{2n}\Rightarrow\dfrac{4n\left(2u_1+\left(n-1\right)d\right)}{2}=\dfrac{2n\left(2u_1+\left(2n-1\right)d\right)}{2}\)
\(\Rightarrow4u_1+2\left(n-1\right)d=2u_1+\left(2n-1\right)d\)
\(\Rightarrow2u_1-d=0\Rightarrow d=2u_1\) (2)
Thế (2) vào (1):
\(\Rightarrow9u_1=18\Rightarrow u_1=2\Rightarrow d=4\)
b.
Do a;b;c là 3 số hạng liên tiếp của 1 CSC công sai 2 nên: \(\left\{{}\begin{matrix}b=a+2\\c=a+4\end{matrix}\right.\)
Khi tăng số thứ nhất thêm 1, số thứ 2 thêm 1 và số thứ 3 thêm 3 được 1 cấp số nhân nên:
\(\left(a+1\right)\left(c+3\right)=\left(b+1\right)^2\)
\(\Rightarrow\left(a+1\right)\left(a+7\right)=\left(a+3\right)^2\)
\(\Rightarrow a^2+8a+7=a^2+6a+9\)
\(\Rightarrow a=1\Rightarrow b=3\Rightarrow c=5\)
Chọn C.
Ta có: u2 + u22 = 40 ⇔ u1 + d + u1 + 21d = 40 ⇔ 2u1 + 22d = 40
Mà
Chọn A.
Ta có: u4 + u8 + u12 + u16 = 224 ó u1 + 3d + u1 + 7d + u1 + 15d = 224
⇔ 4 u1 + 36d = 224 ⇔ u1 + 9d = 56
Ta có: S19 = (19/2).(2 u1 + 18d) = 19(u1 + 9d) = 19.56 = 1064
Chọn D.
Ta có:
+) u23 + u57 = 29 ⇔ u1 + 22d + u1 + 56d = 29 ⇔ 2 u1 + 78d = 29
+) 3 u1 + u10 + u70 + u157 = 3 u1 + u1 + 9d + u1 + 69d + u1 + 156d = 6 u1 + 234d
= 3(2 u1 + 78d) = 3.29 = 87
Chọn B.
Ta có : u1 + u4 + u7 + u10 + u13 + u16 = 147
⇔ u1 + u1 + 3d + u1 + 6d + u1 + 9d + u1 + + 12d + u1 + 15d = 147
⇔ 6 u1 + 45d = 147 ⇔ 2 u1 + 15d = 49
Ta có: u6 + u11 = u1 + 5d + u1 + 10d = 2u1 + 15d = 49
Ta có: u1 + u6 + u11 + u16 = u1 + u1 + 5d + u1 + 10d + u1 + 15d = 4u1 + 30d
= 2(2u1 + 15d) = 2.49 = 98.