Cho a thuộc Z; b thuộc N*, n thuộc N*. hãy chứng minh rằng:
a) nếu a>b thì \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)
b) nếu a=b thì \(\frac{a}{b}=\frac{a+n}{b+n}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A nguyên <=> 3 ⋮ n - 2
=> n - 2 thuộc Ư(3)
=> n - 2 thuộc {-1;1;-3;3}
=> n thuộc {1;3;-1;5}
B nguyên <=> n ⋮ n + 1
=> n + 1 - 1 ⋮ n + 1
=> 1 ⋮ n + 1
=> như a
ĐK : \(n\ne2\)
\(A=\frac{3}{n-2}\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
ĐK : \(n\ne-1\)
\(B=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 1 | 1 | -1 |
n | 0 | -2 |
Cho a thuộc Z+,b thuộc Z- .Hãy so sánh IaI,IbI trong các trường hợp sau:
a)a+b thuộc Z+
b)a+b thuộc Z-
bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm
Ta có: để A thuộc Z
=>13 chia hết cho n-1
=>n-1 thuộc Ư(13)={1;13;-1;-13}
=>n thuộc {2;14;0;-12}
Vậy n thuộc {2;14;0;-12}
a) Để A và n thuộc Z => n+1 chia hết cho n-2
A=(n-2+3) chia hết cho n-2
=> 3 chia hết cho n-2
lập bảng=> n thuộc {3,1,5,9,(-1)}
b) A lớn nhất khi n-2 nhỏ nhất=> n-2=1
=> n=3
Nhớ tk cho mk nha!
a) a > b mà b \(\in\) N* nên a \(\in\) N*
\(a>b\Rightarrow an>bn\) (vì a,b,n \(\in\) N*)
\(\Rightarrow ab+an>ab+bn\) hay \(a.\left(b+n\right)>b.\left(a+n\right)\)
Do đó \(\frac{a}{b}>\frac{a+n}{b+n}\). Đề sai.
fhfgjjgjgf