K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

30 tháng 12 2016

\(\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)=2+a+b+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}\)

\(\ge2+2+a+b+\frac{4}{a+b}\)

\(=4+a+b+\frac{2}{a+b}+\frac{2}{a+b}\)

 \(\ge4+2\sqrt{2}+\frac{2}{\sqrt{2\left(a^2+b^2\right)}}\)

\(=4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Dấu = xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

2 tháng 8 2019

\(M=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

\(\ge2\sqrt{\frac{a^2}{16a^2}}+2\sqrt{\frac{b^2}{16b^2}}+\frac{15\left(\frac{1}{a}+\frac{1}{b}\right)^2}{32}\ge1+\frac{\frac{240}{\left(a+b\right)^2}}{32}\ge\frac{17}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=\frac{1}{2}\)

27 tháng 4 2017

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x;y;z\ge0\) ta được :

\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+\left(a+b+c\right)}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra <=> \(a=b=c=1\)

Vậy GTNN của B là \(\frac{3}{2}\) tại \(a=b=c=1\)

26 tháng 4 2017

áp dụng \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\)   là xong mà,,,,1/a+1/b thì quy đòng r nó cx ra cái kia thôi

26 tháng 4 2017

Tình yêu sao khác thường 
Đôi lúc ta thật kiên cường 
Nhiều người trách mình điên cuồng 
Cứ lao theo dù không lối ra 

26 tháng 4 2017

dùng bđt 1/x+1/y+1/z >/ 9/(x+y+z) với x,y,z>0 

16 tháng 5 2016

ta có: \(a+1>=2\sqrt{a};b+1>=2\sqrt{b};c+1>=2\sqrt{c}\)

=> \(\left(a+1\right)\left(b+1\right)\left(c+1\right)>=8\sqrt{abc}=8\)

Vậy min P=8.Dấu = khi a=b=c=1.

16 tháng 5 2016

Áp dụng BĐT Cô-si, ta lần lượt có:

\(a+1\ge\sqrt{a};b+1\ge\sqrt{b};c+1\ge\sqrt{c}\)

Vậy \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}=8\sqrt{a\times b\times c}=8\)

Dấu bằng xảy ra khi a=b=c=1