K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 7 2021

d.

ĐKXĐ: \(x\left|x\right|-4>0\)

\(\Leftrightarrow x\left|x\right|>4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2>4\end{matrix}\right.\) \(\Leftrightarrow x>2\)

e.

ĐKXĐ: \(\left|x^2-2x\right|+\left|x-1\right|\ne0\)

Ta có:

\(\left|x^2-2x\right|+\left|x-1\right|=0\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x-1=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

\(\Rightarrow\) Hàm xác định với mọi x hay \(D=R\)

NV
12 tháng 7 2021

f.

ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\left|x\right|+4\ne0\end{matrix}\right.\)

Xét \(x\left|x\right|+4=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4=0\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=-2\)

Hay \(x\left|x\right|+4\ne0\Leftrightarrow x\ne-2\)

Kết hợp với \(x\ge-2\Rightarrow x>-2\)

14 tháng 5 2016

\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)

Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)

             \(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\)  \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)

              \(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)

              \(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Hàm số \(y = 2x + 1\) cho bằng công thức \(2x + 1\) nên \(2x + 1\) là biểu thức xác định của hàm số.

b) Hàm số \(y = \sqrt {x - 2} \) cho bằng công thức \(\sqrt {x - 2} \) nên \(\sqrt {x - 2} \) là biểu thức xác định của hàm số.

NV
8 tháng 10 2021

d.

Với \(x-4\ne0;\forall x< 0\Rightarrow\dfrac{x-3}{x-4}\) xác định với mọi \(x< 0\)

\(x+1>0;\forall x\ge0\Rightarrow\sqrt{x+1}\) xác định với mọi \(x\ge0\)

\(\Rightarrow\) Hàm xác định trên R

e.

Ta có:

\(\sqrt{x^2+2x+5}-\left(x+1\right)=\sqrt{\left(x+1\right)^2+4}-\left(x+1\right)\)

\(>\sqrt{\left(x+1\right)^2}-\left(x+1\right)=\left|x+1\right|-\left(x+1\right)\ge0\) ; \(\forall x\)

\(\Rightarrow\) Hàm xác định trên R

a: ĐKXĐ: (x+4)(x-1)<>0

hay \(x\notin\left\{-4;1\right\}\)

b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)

\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)

=>y<=3