K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

Bài 4:

Gọi số máy 3 đội lần lượt là \(a,b,c(a,b,c\in \mathbb{N^*})\)

Áp dụng tc dtsbn:

\(3a=4b=6c\Rightarrow\dfrac{3a}{12}=\dfrac{4b}{12}=\dfrac{6c}{12}\\ \Rightarrow\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{2}=\dfrac{a-b}{4-2}=\dfrac{2}{2}=1\\ \Rightarrow\left\{{}\begin{matrix}a=4\\b=3\\c=2\end{matrix}\right.\)

Vậy ...

14 tháng 12 2021

(Bạn tự vẽ hình nha!)

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:

          AB=AC (gt)

          A là góc chung

Do đó, ............... (ch-gn)

=> BD=CE (2 cạnh tương ứng)

b) Vì AB=AC nên tam giác ABC là tam giác cân tại A => B=C => B1 + B2 = C1 + C2

Mà B1 = C1 (vì tam giác ABD= tam giác ACE) nên B2= C2

Xét tam giác BEC vuông tại E và tam giác CDB vuông tại D có:

          BD=CE (cmt)

          B2= C2 (cmt)

Do đó,.......... (ch-gn)

=> BE=DC (2 cạnh tương ứng)

Xét tam giác OBE vuông tại E và tam giác OCD vuông tại D có:

         BE= DC (cmt)

         B1 = C1 (cmt)

Do đó tam giác OBE= tam giác OCD (cgv-gnk)

c) Ta có: AB=AC (gt) => AE+EB= AD+DC

Mà BE=DC (cmt) nên AE=AD

Xét tam giác ADO và tam giác AEO có:

          EO=OD ( vì tam giác OBE= tam giác OCD)

          AE=AD (cmt)

          AO là cạnh chung

Do đó,.................(c.c.c)

=> A1= A2 ( 2 góc tương ứng)

=> AO là tia phân giác góc A

Vậy AO là tia phân giác góc BAC.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: \(\widehat{OCB}=\widehat{OBC}\)

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

1 tháng 3 2022

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

ˆBADBAD^ chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: ˆOCB=ˆOBCOCB^=OBC^

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

24 tháng 3 2020

A) \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

XÉT \(\Delta BDA\)VUÔNG TẠI D VÀ\(\Delta CEA\)VUÔNG TẠI E CÓ

       \(BA=CA\left(GT\right)\)

  \(\widehat{A}\)LÀ GÓC CHUNG

=>\(\Delta BDA\)=\(\Delta CEA\)( CẠNH HUYỀN - GÓC VUÔNG )

=> BD = CE HAI CẠNH TƯƠNG ỨNG ( ĐPCM )

B)  VÌ \(\Delta BDA\)=\(\Delta CEA\)(CMT)

=> DA = EA ( HAI CẠNH TƯƠNG ỨNG ); \(\widehat{ABD}=\widehat{ACE}\)HAY \(\widehat{EBO}=\widehat{DCO}\)( HAI GÓC TƯƠNG ỨNG ) 

MÀ \(BE+EA=AB\)

    \(CD+DA=AC\)

MÀ AB = AC (CMT);  DA = EA (CMT)

=> BE = CD

XÉT \(\Delta OEB\)\(\Delta ODC\)

\(\widehat{BEO}=\widehat{CDO}=90^o\)

\(EB=DC\left(CMT\right)\)

 \(\widehat{EBO}=\widehat{DCO}\)

=>\(\Delta OEB\)=\(\Delta ODC\)(G-C-G)

24 tháng 3 2020

C) VÌ  \(\Delta OEB=\Delta ODC\left(CMT\right)\)

=> OE = OD

XÉT \(\Delta AEO\)\(\Delta ADO\)

\(AE=AD\left(CMT\right)\)

\(\widehat{AEO}=\widehat{ADO}=90^o\)

OE = OD (CMT)

=>\(\Delta AEO\)=\(\Delta ADO\)(C-G-C)

=> \(\widehat{EAO}=\widehat{DAO}\)HAI GÓC TƯƠNG ỨNG

MÀ AO ẰM GIỮA AE VÀ AD

=> AO LÀ PHÂN GIÁC CỦA \(\widehat{EAD}\)

HAY  AO LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)

26 tháng 12 2016

a) Xét t/g ADB vuông tại D và t/g AEC vuông tại E có:

AB = AC (gt)

A là góc chung

Do đó, t/g ADB = t/g AEC ( cạnh huyền - góc nhọn) (đpcm)

b) t/g ADB = t/g AEC (câu a)

=> ABD = ACE (2 góc tương ứng)

AD = AE (2 cạnh tương ứng)

Mà AC = AB (gt)

=> AC - AD = AB - AE

=> CD = EB

t/g ODC = t/g OEB ( cạnh góc vuông và góc nhọn kề)

=> OD = OE (2 cạnh tương ứng) (đpcm)

c) T/g AOD = t/g AOE (c.c.c)

=> DAO = EAO (2 góc tương ứng)

=> AO là phân giác EAD

=> đpcm

26 tháng 12 2016

A B C O E D

a) Xét ΔADB và ΔAEC có:

AB = AC (gt)

\(\widehat{A}\) chung.

=> ΔADB = ΔAEC (cạnh huyền - góc nhọn).

b) Vì ΔADB = ΔAEC nên \(\widehat{ACE}\) = \(\widehat{ABD}\) ( 2 góc tương ứng ) hay \(\widehat{DCO}\) = \(\widehat{EBO}\); AD = AE (2 cạnh tương ứng)

Ta có: AD + DC = AC

AE + EB = AB

mà AD = AE (chứng minh trên); AC= AB (gt)

=> DC = EB.

Xét ΔDOC và ΔEOB có:

\(\widehat{ODC}\) = \(\widehat{OEB}\) (= 90)

DC = EB ( chứng minh trên)

\(\widehat{DCO}\) = \(\widehat{EBO}\) (cm trên)

=> ΔDOC = ΔEOB (g.c.g)

=> DO = EO ( 2 cạnh tương ứng)

c) Do ΔDOC = ΔEOB nên OC = OB ( 2 cạnh tương ứng)

Xét ΔBAO và ΔCAO có:

BA = CA ( gt)

AO chung.

BO = CO (chưng minh trên)

=> ΔBAO = ΔCAO (c.c.c)

=> \(\widehat{BAO}\) = \(\widehat{CAO}\) ( 2 góc t ư)

Vì vậy AO là tia pg của \(\widehat{BAC}\).

Chúc học tốt Ngọc Thái

9 tháng 3 2022

F ở đâu bạn ? 

b, Xét tam giác ABD và tam giác ACE 

^A _ chung 

AB = AC 

Vậy tam giác ABD = tam giác ACE (ch-gn) 

c, Ta có BD ; CE lần lượt là đường cao 

mà BD giao CE = O 

=> O là trực tâm tam giác ABC 

=> AO là đường cao thứ 3 trong tam giác 

mà tam giác ABC cân tại A nên AO là đường cao

đồng thời là đường phân giác ^BAC 

30 tháng 12 2021

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE