Tìm ${x}$, $y$ biết:
a) $\dfrac{x}{5}=\dfrac{-3}{15}$;
b) $\dfrac{x}{17}=\dfrac{y}{12}$ và ${x}-{y}=10$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\dfrac{x}{y} = \dfrac{5}{3} \Rightarrow \dfrac{x}{5} = \dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{x + y}}{{5 + 3}} = \dfrac{{16}}{8} = 2\\ \Rightarrow x = 2.5 = 10\\y = 2.3 = 6\end{array}\)
Vậy x=10, y=6
b) Vì \(\dfrac{x}{y} = \dfrac{9}{4} \Rightarrow \dfrac{x}{9} = \dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{9} = \dfrac{y}{4} = \dfrac{{x - y}}{{9 - 4}} = \dfrac{{ - 15}}{5} = - 3\\ \Rightarrow x = ( - 3).9 = - 27\\y = ( - 3).4 = - 12\end{array}\)
Vậy x = -27, y = -12.
a. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$
$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$
b. Áp dụng tính chất dãy tỉ số bằng nhau:
$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$
$\Rightarrow x=(-84):7=-12; y=-84:3=-28$
c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$
$\Rightarrow x=2.5=10; y=9.2=18$
d. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$
$\Rightarrow x=16.15=240; y=7.16=112$
e.
Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$
Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$
Với $k=10$ thì $x=5k=50; y=2k=20$
Với $k=-10$ thì $x=5k=-50; y=2k=-20$
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
1:
a: x/15=-2/6
=>x/15=-1/3
=>x=-5
b: 3/x=1,8/2
=>3/x=9/10
=>x=3*10/9=30/9=10/3
c: (x-3)/(x+2)=2/7
=>2x+4=7x-21
=>-5x=-25
=>x=5
d: (x+1)/3=(x-6)/8
=>8x+8=3x-18
=>5x=-26
=>x=-26/5
e: (2-x)/5=(x+4)/3
=>3(2-x)=5(x+4)
=>5x+20=6-3x
=>8x=-14
=>x=-7/4
g: (2x+1)/(-3)=(1-x)/2
=>2(2x+1)=3(x-1)
=>4x+2=3x-3
=>x=-5
Bài 4:
a) \(\dfrac{2.7.13}{26.35}=\dfrac{2.7.13}{13.2.7.5}=\dfrac{1}{5}\)
b) \(\dfrac{23.5-23}{4-27}=\dfrac{23.\left(5-1\right)}{-23}=\dfrac{23.4}{-23}=-4\)
c) \(\dfrac{2130-15}{3550-25}=\dfrac{2115}{3525}=\dfrac{3}{5}\)
`a, x-2=7/15`
`=>x=7/15 +2`
`=>x= 7/15+ 30/15`
`=>x= 37/15`
`b, 9/20 +x=2/5 +3/20`
`=> 9/20 +x=8/20 +3/20`
`=> 9/20 +x=11/20`
`=>x=11/20-9/20`
`=>x= 2/20=1/10`
x = \(\dfrac{7}{15}\) + 2 = \(\dfrac{37}{15}\)
x = \(\dfrac{2}{5}\) + \(\dfrac{3}{20}\) - \(\dfrac{9}{20}\) = \(\dfrac{1}{10}\)
a: Ta có: \(\dfrac{1}{4}:x=3\dfrac{4}{5}:40\dfrac{8}{15}\)
\(\Leftrightarrow x=\dfrac{1}{4}\cdot\dfrac{\dfrac{608}{15}}{3+\dfrac{4}{5}}\)
\(\Leftrightarrow x=\dfrac{152}{15}:\dfrac{19}{5}=\dfrac{8}{3}\)
b: Ta có: \(\left(x+1\right):\dfrac{5}{6}=\dfrac{20}{3}\)
\(\Leftrightarrow x+1=\dfrac{50}{9}\)
hay \(x=\dfrac{41}{9}\)
c: Ta có: \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
hay \(x\in\left\{8;-8\right\}\)
c. \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x-1\right).\left(x+1\right)\)
\(63=x^2-1\)
\(x^2=63+1\)
\(x^2=64\)
\(x^2=8^2\)
\(x=8\)
\(a,\dfrac{x}{5}=\dfrac{-18}{10}\\ \Rightarrow x=-\dfrac{18}{10}.5\\ \Rightarrow x=-9\\ b,\dfrac{6}{x-1}=\dfrac{-3}{7}\\ \Rightarrow6.7=-3\left(x-1\right)\\ \Rightarrow42=-3x+3\\ \Rightarrow42+3x-3=0\\ \Rightarrow3x+39=0\\ \Rightarrow3x=-39\\ \Rightarrow x=-13\\ c,\dfrac{y-3}{12}=\dfrac{3}{y-3}\\ \Rightarrow\left(y-3\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}y-2=6\\y-2=-6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}y=8\\y=-4\end{matrix}\right.\)
\(d,\dfrac{x}{25}=\dfrac{-5}{x^2}\\ \Rightarrow x^3=-125\\ \Rightarrow x^3=\left(-5\right)^3\\ \Rightarrow x=-5\)
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)
b) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)
Đính chính
Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)
a)4/5+x=2/3
x=2/3-4/5
x=-2/15
b)-5/6-x=2/3
x=-5/6-2/3
x=-3/2
c)1/2x+3/4=-3/10
1/2x=-3/10-3/4
1/2x=-21/20
x=-21/20:1/2
x=-21/10
d)x/3-1/2=1/5
x/3=1/5+1/2
x/3=7/10
10x/30=21/30
10x=21
x=21:10
x=21/10
a/\(\dfrac{x}{5}=\dfrac{-3}{15}\)
\(\dfrac{x}{5}=\dfrac{-1}{5}\)
\(x=-1\)
b/Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{17}=\dfrac{y}{12}=\dfrac{x-y}{17-12}=\dfrac{10}{5}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot17=34\\y=2\cdot12=24\end{matrix}\right.\)
a/�5=−3155x=15−3
�5=−155x=5−1
�=−1x=−1
b/Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
�17=�12=�−�17−12=105=217x=12y=17−12x−y=510=2
⇒{�=2⋅17=34�=2⋅12=24⇒{x=2⋅17=34y=2⋅12=24