cho a,b,c, khác 0 TM : ac=b^2 ; ab=c^2 . tính M = a^2011/b^2005 . c^2006
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(b^2=ac\)\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}\)\(\Rightarrow\)\(\frac{a}{b}=\frac{2017b}{2017c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{2017b}{2017c}=\frac{a+2017b}{b+2017c}\)
\(\Rightarrow\)\(\left(\frac{a}{b}\right)^2=\left(\frac{a+2017b}{b+2017c}\right)^2=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)\(\left(1\right)\)
Lại có :
\(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{ab}{bc}=\frac{a}{c}\)\(\left(2\right)\)
Từ (1) và (2) suy ra :
\(\frac{a}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)
Vậy ...
Chúc bạn học tốt ~
Ta có: \(b^2=ac\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a}{b}=\frac{2017b}{2017c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{2017b}{2017c}=\frac{a+2017b}{b+2017c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{a+2017b}{b+2017c}\right)^2=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\left(1\right)\)
Ta lại có:
\(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{ab}{bc}=\frac{a}{c}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}=\frac{a}{c}\)
Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath
\(\left\{{}\begin{matrix}ac=b^2\\ab=c^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{b^2}{c}\\a=\dfrac{c^2}{b}\end{matrix}\right.\) \(\Rightarrow\dfrac{b^2}{c}=\dfrac{c^2}{b}\Rightarrow b^3=c^3\Rightarrow b=c\)
Thay vào \(ac=b^2\Rightarrow a.b=b^2\Rightarrow a=b\)
\(\Rightarrow a=b=c\)
\(\Rightarrow M=\dfrac{a^{2011}}{a^{2005}.a^{2006}}=\dfrac{a^{2011}}{a^{2011}}=1\)