Cho (a,b)=1.CMR:
a) ( b , a - b ) = 1 với a > b
b) (a^2 + b^2 ; ab ) = 1
Ai làm đúng , nhanh và trình bày đẹp mình tick cho
Mình gấp lắm tối nay phải làm xong
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
ta có: \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)
\(\Rightarrow\frac{2}{c}=\frac{b+a}{ab}\)
\(\Rightarrow2ab=c\left(a+b\right)\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
tíc mình nha
Chính bài của em:
Cho \(a,b,c\ge1\). CMR: \(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)+2\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}... - Hoc24
Áp dụng bất đẳng thức Holder ta có:
\(\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\right)\ge\left(a+b+c\right)^3\).
Do đó ta chỉ cần chứng minh \(\left(a+b+c\right)^3\ge a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge24abc\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\). Đây là một bđt rất quen thuộc
Không Holder thì Svacxo nha :v
Áp dụng BĐT Svacxo ta có :
\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}}\)
Ta có sẽ đi chứng minh :
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}\le\left(a+b+c\right)^2\)
Thật vậy theo Bunhiacopxki có :
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\sqrt{a^3+8abc}+\sqrt{b}\sqrt{b^3+8abc}+\sqrt{c}\sqrt{c^3+8abc}\)
\(\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)
Ta lại đi chứng minh :
\(a^3+b^3+c^3+24abc\le\left(a+b+c\right)^3\)
\(\Leftrightarrow24abc\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) ( Đây là BĐT đúng )
Do đó nhân vào ta có đpcm.
Vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ac}{abc}=0\Leftrightarrow ab+bc+ac=0\)
Ta có:
\(a+b+c=1\)
\(\Leftrightarrow\left(a+b+c\right)^2=1\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=1\)
\(\Leftrightarrow a^2+b^2+c^2=1\left(đpcm\right)\)
Mình biết cách làm nhưng mình biết bạn sẽ chép bài nên mình sẽ không chỉ cho đâu
mink biết làm rồi ko cần bạn nha