Câu 2: (2,0 điểm) Cho a + b = x + y; a2 + b2 = x2 + y2.
Chứng minh rằng: a2010 + b2010 = x2010 + y2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 17:
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét ΔBDC có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(2\right)\)
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)
=>OE=OH
Câu 15:
a: \(3x\left(x-1\right)+x-1=0\)
=>\(3x\left(x-1\right)+\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(3x+1\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b: \(x^2-6x=0\)
=>\(x\cdot x-x\cdot6=0\)
=>x(x-6)=0
=>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b: Để (d)//(d1) thì m-2=-5 và 2<>1(đúng)
=>m=-3
c: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(m-2\right)x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-2}{m-2}\end{matrix}\right.\)
=>\(OA=\dfrac{2}{\left|m-2\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m-2\right)\cdot0+2=2\end{matrix}\right.\)
=>OB=2
\(S_{OAB}=1\)
=>\(\dfrac{1}{2}\cdot OA\cdot OB=1\)
=>\(\dfrac{1}{2}\cdot2\cdot\dfrac{2}{\left|m-1\right|}=1\)
=>\(\left|m-1\right|=2\)
=>\(\left[{}\begin{matrix}m-1=2\\m-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
để 2 đường thẳng y = (2m-1)x – 3 và y=mx+m^2- 4m cắt nhau tại một điểm nằm trên trục tung.<=>2m-1\(\ne\)m(*) ; -3=m^2-4m(**)
từ(*)=>2m-m≠1<=>m≠1
từ (**)
=> m^2-4m+3=0
<=>(m-1)(m-3)=0<=>m=1(loại) hoặc m=3(thỏa mãn)
vậy m=3 thì đường thẳng y = (2m-1)x – 3 và y=mx+m2- 4m cắt nhau tại một điểm nằm trên trục tung.
Phương trình hoành độ giao điểm của hai đường thẳng đã cho:
\(\left(2m-1\right)x-3=mx+m^2-4m\)
Do hai đường thẳng này cắt nhau tại một điểm trên trục tung nên giao điểm của chúng có hoành độ bằng 0
\(\Rightarrow m^2-4m=-3\)
\(\Leftrightarrow m^2-4m+3=0\)
Do \(a+b+c=1+\left(-4\right)+3=0\)
\(\Rightarrow m=1;m=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Vậy \(m=1;m=3\) thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung
Từ a+b=x+y(*)
=> a-x=y-b
Mặt khác : a^2+b^2=x^2+y^2
=> a^2-x^2=y^2-b^2
=>(a+x)(a-x)=(y-b)(y+b)
=>(a+x)(a-x)=(y+b)(a-x)
=> a-x =0 (**) hoặc a+x=b+y(***)
Với a +b=x+7 và a=x
=> b=y => a^2010+b^2010=x^2010+y^2010
Với a+b=x+y
và a+x=b+y =>a=y ; b=x => a^2010+b^2010=x^2010=y^2010
=> đpcm
Chúc bạn học tốt!!!!
bạn có bấm nhầm chỗ nào ko v