1) Cho dãy số: U1 = 144; U2 = 233; Un+1 = Un+Un−1.
a) Tính U12, U37, U38, U39.
b) Viết quy trình tìm số hạng nhỏ nhất trong tất cả các số hạng của dãy sao cho: Un = n + \({{9696} \over n^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
Đáp án A
Em cần tìm ra quy luật của dãy số và từ đó tính số hạng tổng quát
Em có:
Ta có u 2 = 1 3
Với n ≥ 3 ta có
u 1 + 2 u 2 + . . + n - 1 u n - 1 + n u n = n n 2 - 1 u n + n u n = n 3 u n ⇒ n u n 3 = n u n + n - 1 3 u n - 1 ⇒ u n u n - 1 = n - 1 3 n 3 - n = n - 1 n 2 n n + 1 1
Từ (1) suy ra
u n u 2 = u n u n - 1 . u n - 1 u n - 2 . . . u 3 u 2 = n - 1 n 2 . n - 1 n - 2 2 . . 2 3 2 n n - 1 . n - 1 n . . . 3 4 = 12 n 2 n + 1 ⇒ u n = 4 n 2 n + 1
Vậy l i m n + 2018 3 U n = 4
Đáp án D
Chọn D.
Ta có
Đặt: vn = un + 5
Khi đó ta được dãy mới; là cấp số nhân với : v1 = 6; q = 2
⇒ v2018 = 22017.v1 = 6.22017 ⇒ u2018 = 6.22017 – 5.
Mình sửa câu b) nhé:
b) Viết quy trình tìm số hạng nhỏ nhất trong tất cả các số hạng của dãy sao cho: Un = n + 9696/n^2