Cho M = \(1+3+3^2+..+3^{100}\)
a) Thu gọn m ; Tìm chữ số tận cùng của 2M
b ) Tìm x để : \(3^{x-3}-1=2M\)
c) Tìm số dư để khi chia M cho 13 , M chia cho 40
Ai nhanh mình tick cho , mk cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
a) Ta có : M = 1/9 . x^4 . y^3 . (2xy^2)^2
M = 1/9 . x^4 . y^3 .4 . x^2 . y^4
M = (1/9 . 4) . (x^4 . x^2) . (y^3 . y^4)
M = 4/9 . x^6 . y^7
Vậy
a: \(M=\left(-\dfrac{2}{3}xy^3\right)^3\cdot\left(3xy^2\right)^3\)
\(=-\dfrac{8}{27}\cdot x^3y^9\cdot27\cdot x^3y^6\)
\(=-8x^6y^{15}\)
b: Hệ số của M là -8
Phần biến của M là \(x^6;y^{15}\)
Bậc của M là 6+15=21
c: Thay x=-1 và y=1 vào M, ta được:
\(M=-8\cdot\left(-1\right)^6\cdot1^{15}=-8\)
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) M = 1 + 3 + 32 + ... + 3119
=> 3M = 3 + 32 + ... + 3120
=> 3M - M = 3 + 32 + ... + 3120 - ( 1 + 3 + 32 + ... + 3119)
=> 2M = 3 + 32 + ... + 3120 - 1 - 3 - 32 - 3119
=> 2M = 3120 - 1
=> M = \(\frac{3^{120}-1}{2}\)
b) M = 1 + 3 + 32 + ... + 3119
=> M = (1+3+32+33)+...+(3116+3117+3118+3119)
=> M = 40 + ... + 3116.(1+3+32+33)
=> M = 40 + ... + 3116.40
=> M = 40.(1+...+3116) \(⋮\)5 => M \(⋮\)5.
M = 1 + 3 + 32 + ... + 3119
=> M = (1+3+32) + ... + (3117+3118+3119)
=> M = (1+3+32) + ... + 3117.(1+3+32)
=> M = 13 + ... + 3117.13
=> M = 13.(1+...+3117) \(⋮\)13 => M \(⋮\)13
a/ \(M=1+3+3^2+.....+3^{119}\)
\(\Leftrightarrow3M=3+3^2+.....+3^{119}+3^{120}\)
\(\Leftrightarrow3M-M=\left(3+3^2+.....+3^{120}\right)-\left(1+3+....+3^{119}\right)\)
\(\Leftrightarrow2M=3^{120}-1\)
\(\Leftrightarrow M=\dfrac{3^{120}-1}{2}\)
b/ \(M=1+3+3^2+..........+3^{119}\)
\(=\left(1+3+3^2\right)+........+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=1\left(1+3+3^2\right)+........+3^{117}\left(1+3+3^2\right)\)
\(=1.13+.....+3^{117}.13\)
\(=13\left(1+.....+3^{117}\right)⋮13\Leftrightarrow M⋮13\left(đpcm\right)\)