Cho hình chóp S.ABCD có đáy là hình vuông; S A = A B = a và S A ⊥ A B C D . Gọi M là trung điểm AD, tính khoảng cách giữa hai đường thẳng SC và BM
A. a 14 6
B. 6 a 14
C. a 14 2
D. 2 a 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Số mặt bên là 4
\(SAB;SAD;SBC;SCD\)
2: Số cạnh đáy là 4
AB,BC,CD,DA
3: SA và BC là hai đường thẳng chéo nhau
4: 4 đỉnh: A,B,C,D
5: Có 7 mặt: \(SAB;SAD;SBC;SCD;SAC;SBD;ABCD\)
6C
Diện tích đáy S A B C D = a 2
Thể tích khối chóp là
V A B C D = 1 3 S A . S A B C D = 1 3 . a 3 . a 2 = a 3 3 3
Chọn đáp án B.
Phương pháp:
Thể tích khối chóp có chiều cao h và diện tích đáy S là
Cách giải:
Diện tích đáy
Thể tích khối chóp là
Chọn B.
Đáp án D
Dựng C E / / B M khi đó d B M ; S C = d B M ; S C E
Ta có A E M E = 3 2 ⇒ d M = 2 3 d A
Dựng A I ⊥ C E ; A F ⊥ S I ⇒ d A = A F
Trong đó S A = a , A I = A E sin E , với
sin E = C D C E = a a 2 + a 2 2 = 2 5 ⇒ A I = 3 a 2 . 2 5 = 3 a 5
Hoặc tính A I = 2 S A C D C D ⇒ d A = A I . S A A I 2 + S A 2 = 3 14 ⇒ d M = 2 14