K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

1: Số mặt bên là 4

\(SAB;SAD;SBC;SCD\)

2: Số cạnh đáy là 4

AB,BC,CD,DA

3: SA và BC là hai đường thẳng chéo nhau

4: 4 đỉnh: A,B,C,D

5: Có 7 mặt: \(SAB;SAD;SBC;SCD;SAC;SBD;ABCD\)

6C

20 tháng 11 2018

9 tháng 6 2018

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm thiết diện :

Trong mp(ABCD), gọi F = AD ∩ PN và E = AB ∩ PN

Trong mp(SAD), gọi Q = MF ∩ SD

Trong mp(SAB), gọi R = ME ∩ SB

Nối PQ, NR ta được các đoạn giao tuyến của mp(MNP) với các mặt bên và mặt đáy của hình chóp là MQ, QP, PN, NR, RM

Vậy thiết diện cắt bởi mặt phẳng (MNP) là ngũ giác MQPNR.

b) Tìm SO ∩ (MNP). Gọi H là giao điểm của AC và PN .

Trong (SAC), SO ∩ MH = I

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Vậy I = SO ∩ (MNP).

20 tháng 12 2021
a. M là điểm chung thứ nhất của (MCB) và (SAD). Ta có: CB // AD. Vậy giao tuyến của (MCB) và (SAD) là đường thẳng d kẻ từ M và song song với AD b. Trong (SAD): d \cap∩ SD = F. Vậy thiết diện cần tìm là hình thang MFCB.
NV
12 tháng 3 2023

\(SA\perp ABCD\Rightarrow SA\) vuông góc với các đường thẳng AB, BC, CD, DA, AC, BD

2:

a: AD và BC là hai đường thẳng song song

b: \(S\in\left(SAB\right)\)

\(S\in\left(SCD\right)\)

Do đó:S là giao điểm của hai mặt phẳng (SAB) và (SCD)

c: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó; \(\left(SAB\right)\cap\left(SCD\right)=mn\), mn đi qua S và mn//AB//CD

 

12 tháng 9 2019

Đáp án C

27 tháng 6 2017

 

Chọn B

Lời giải. Để cho gọn ta chọn a=1

 

Chọn hệ trục tọa độ Oxyz như hình vẽ với A(0;0;0) và B(1;0;0) , D(0; 3 ;0)

Suy ra C(1; 3 ;0)

VTPT của mặt phẳng (SBC) là 

Đường thẳng  có VTCP là

Khi đó 

 

9 tháng 1 2017

Đáp án D

Dễ thấy 

Lại có ∆SAC vuông tại A

=> AC = SA = 

Vậy VS.ABCD  = 

23 tháng 3 2018

Đáp án C

Gọi H là hình chiếu của C trên SO(O = AC ∩ BD), vì góc SOC tù nên H nằm ngoài SO

=> Góc tạo bởi SC và (SBD) là C S O ^

Ta có 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

\(\begin{array}{l}\left. \begin{array}{l} + )BC \bot AB\left( {hcn\,\,ABCD} \right)\\BC \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AB \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right);SB \subset \left( {SAB} \right) \Rightarrow BC \bot SB\\\left. \begin{array}{l} + )CD \bot AD\left( {hcn\,\,ABCD} \right)\\CD \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AD \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow CD \bot \left( {SAD} \right);SD \subset \left( {SAD} \right) \Rightarrow CD \bot SD\end{array}\)

Xét tam giác SAB có

\(SA \bot AB\left( {SA \bot \left( {ABCD} \right)} \right)\)

\( \Rightarrow \) Tam giác SAB vuông tại A

Xét tam giác SBC có

\(SB \bot BC\)

\( \Rightarrow \) Tam giác SBC vuông tại B

Xét tam giác SCD có

\(SD \bot CD\)

\( \Rightarrow \) Tam giác SCD vuông tại D

Xét tam giác SAD có

\(SA \bot AD\left( {SA \bot \left( {ABCD} \right)} \right)\)

\( \Rightarrow \) Tam giác SAD vuông tại A