K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)

Xét tứ giác EHAC có 

\(\widehat{EHA}\) và \(\widehat{ECA}\) là hai góc đối

\(\widehat{EHA}+\widehat{ECA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: EHAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: \(\widehat{HEC}+\widehat{HAC}=180^0\)(hai góc đối)

mà \(\widehat{HAC}+\widehat{BAC}=180^0\)(Hai góc kề bù)

nên \(\widehat{HEC}=\widehat{CAB}\)(Đpcm)

18 tháng 5 2021

Em cần câu b

 

a) Xét tứ giác AMCO có 

\(\widehat{MAO}\) và \(\widehat{MCO}\) là hai góc đối

\(\widehat{MAO}+\widehat{MCO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AMCO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

\(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)

hay AD\(\perp\)MB tại D

Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm(gt)

MC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: MA=MC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: MA=MC(cmt)

nên M nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OC(=R)

nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra MO là đường trung trực của AC

hay MO\(\perp\)AC tại E

Xét tứ giác AMDE có 

\(\widehat{ADM}=\widehat{AEM}\left(=90^0\right)\)

\(\widehat{ADM}\) và \(\widehat{AEM}\) là hai góc cùng nhìn cạnh AM

Do đó: AMDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

18 tháng 5 2021

Bạn có giải đc câu b ko . Giúp mình câu đấy 

1: góc OAS+góc OBS=90+90=180 độ

=>OASB nội tiép

2: Xét ΔSAC và ΔSDA có

góc SAC=góc SDA

góc ASC chung

=>ΔSAC đồng dạng với ΔSDA

=>SA/SD=SC/SA

=>SA^2=SD*SC=SA*SB

3: Xét (O) có

SA,SB là tiêp tuyến

=>SA=SB

mà OA=OB

nên OS là trung trực của AB

=>OS vuông góc AB tại I

=>SI*SO=SA^2=SC*SD

=>SI/SD=SC/SO

=>ΔSIC đồng dạng với ΔSDO

a Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó:BCEF là tứ giác nội tiếp

b: Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{BAE}\) chung

DO đó: ΔABE\(\sim\)ΔACF

Suy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AE\cdot AC\)

1: ΔOCD cân tại O

mà OK là trung tuyến

nên OK vuông góc CD

góc OKM+góc OBM=180 độ

=>OKMB nội tiếp

2: Gọi giao của AB và OM là H

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

Xét ΔOHN vuông tại H và ΔOKM vuông tại K có

góc HON chung

=>ΔOHN đồng dạng với ΔOKM

=>OH/OK=ON/OM

=>OK*ON=OH*OM=OC^2

=>OC/ON=OK/OC

=>ΔOCK đồng dạng với ΔONC

=>góc OCN=góc OKC=90 độ

=>NC là tiếp tuyến của (O)

1: Xét (O) có

MB,MA là tiếp tuyến

=>MB=MA

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại I

góc OID+góc OCD=180 độ

=>OIDC nội tiếp

2: 

Xét ΔBAC vuông tại B có sin BCA=BA/AC=căn 3/2

=>góc BCA=60 độ

=>góc BAC=30 độ

góc MAE+góc OAE=90 độ

góc IAE+góc OEA=90 độ

mà góc OAE=góc OEA

nên góc MAE=góc IAE=1/2*góc MAB=30 độ

=>góc IAE=góc IBO

=>AE//BO

Chứng minh tương tự, ta được: góc EBI=30 độ=góc OAI

=>BE//OA

mà OA=OB

nên OAEB là hình thoi

Đề:Câu 4 (3,0 điểm) Cho đường tròn (O) và điểm F nằm ngoài đường tròn. Từ F kẻ các tiếp tuyến FA và FB với đường tròn (O) ( A, B là các tiếp điểm). Vẽ đường kính BE của đường tròn (O), FE cắt AO tại I. Qua I vẽ đường thẳng song song với AE cắt AF tại K, cắt BE tại G.a) Chứng minh tứ giác AOBF nội tiếp b) Chứng minh I là trung điểm của KGCâu 4 (3,0 điểm)Cho đường tròn (O) và điểm F...
Đọc tiếp

Đề:Câu 4 (3,0 điểm) Cho đường tròn (O) và điểm F nằm ngoài đường tròn. Từ F kẻ các tiếp tuyến FA và FB với đường tròn (O) ( A, B là các tiếp điểm). Vẽ đường kính BE của đường tròn (O), FE cắt AO tại I. Qua I vẽ đường thẳng song song với AE cắt AF tại K, cắt BE tại G.

a) Chứng minh tứ giác AOBF nội tiếp

 

b) Chứng minh I là trung điểm của KG
Câu 4 (3,0 điểm)
Cho đường tròn (O) và điểm F nằm ngoài đường tròn. Từ F kẻ các tiếp tuyến FA và
FB với đường tròn (O) ( A, B là các tiếp điểm). Vẽ đường kính BE của đường tròn (O), FE
cắt AO tại I. Qua I vẽ đường thẳng song song với AE cắt AF tại K, cắt BE tại G.
a) Chứng minh tứ giác AOBF nội tiếp
b) Chứng minh I là trung điểm của KG
c) Gọi M là giao của AB và OF, N là trung điểm của FM, NB cắt đường tròn (O) tại
P ( P khác B). Chứng minh PM vuông góc với NBc) Gọi M là giao của AB và OF, N là trung điểm của FM, NB cắt đường tròn (O) tại P ( P khác B). Chứng minh PM vuông góc với NB —->Giải câu b và c thôi nha

1
30 tháng 5 2022

undefinedundefined

a: góc ADB=1/2*180=90 độ

góc EOB+góc EDB=180 độ

=>EOBD nội tiếp

b: Xét ΔACE và ΔADC có

góc ACE=góc ADC

góc CAE chung

=>ΔACE đồng dạng với ΔADC

=>AC^2=AE*AD

c: góc EIB=góc EDB=90 độ

=>EIDB nội tiếp

=>góc IED=góc IBD; góc IDE=góc IBE

góc IBE+góc OBE=góc IBO=45 độ

ΔEAB cân tại E 

=>góc EAB=góc EBA

=>góc IBE+góc EAB=45 độ

góc IDE=góc IBE

=>góc IDE+1/2*sđ cung BD=45 độ

1/2*sđ cung BC=1/2*sđ cung CD+1/2*sđ cung DB

=>góc IED+1/2*sđ cung BD=45 độ

=>góc IDE=góc IED

=>ID=IE

góc ICE=45 độ; góc EIC=90 độ

=>ΔEIC vuôngcân tại I

=>IE=IC=ID

=>ĐPCM