Cho tam giác ABC vuông tại A, nội tiếp đường tròn (O; R). Qua B vẽ tiếp tuyến với đường tròn (O) cắt AC tại D. Chứng minh rằng: CA.CD=4R^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pitago vào tam giác vuông ABC ta có :
B C 2 = A B 2 + A C 2 = 3 2 + 4 2 = 25
Suy ra : BC = 5 (cm)
Theo tính chất hai tiếp tuyến giao nhau ta có:
AD = AE
BD = BF
CE = CF
Mà: AD = AB – BD
AE = AC – CF
Suy ra: AD + AE = AB – BD + (AC – CF)
= AB + AC – (BD + CF)
= AB + AC – (BF + CF)
= AB + AC – BC
Suy ra:
a: góc OAD+góc OMD=180 độ
=>OADM nội tiếp
b: ΔOBC cân tại O
mà ON là đường cao
nên ONlà trung trực của BC
=>sđ cung NB=sd cung NC
=>góc BAN=góc CAN
=>AN là phân giác của góc BAC
góc DAI=1/2*sđ cung AN
góc DIA=1/2(sđ cung AB+sđ cung NC)
=1/2(sđ cung AB+sđ cung NB)
=1/2*sđ cung AN
=>góc DAI=góc DIA
=>ΔDAI cân tại D
a: A,B,M,C cùng nằm trên (O)
=>ABMC nội tiếp
b: Xét ΔNCM và ΔNBA có
góc NCM=góc NBA
góc N chung
=>ΔNCM đồng dạng với ΔNBA
=>NC/NB=NM/NA
=>NC*NA=NB*NM
a: Sửa đề: CF là đường cao
góc BEH+góc BFH=180 độ
=>BEHF nội tiếp
góc AFC=góc AEC=90 độ
=>AFEC nội tiếp
b: Để ΔABC vuông tại A thì BC là đường kính của (O)
a: góc BHD+góc BMD=180 độ
=>BHDM nội tiếp
b: BHDM nội tiếp
=>góc HDM+góc HBM=180 độ
=>góc ADM=góc ABC
=>góc ADM=góc ADC
=>DA là phân giáccủa góc MDC
c: Xét tứ giác DHNC có
góc DHC=góc DNC=90 độ
=>DHNC nội tiếp
=>góc NHD=góc NDC
góc NHD+góc MHD
=180 độ-góc NCD+góc MBD
=180 độ+180 độ-góc ABD-góc ACD
=180 độ
=>M,H,N thẳng hàng
Tham khảo:
Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)
Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)
Xét tỉ số:
\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)
a. Vì I là trung điểm của AC \(\Rightarrow\) OI \(\perp\) AC ( quan hệ giữa đk và dây )
hay KI \(\perp\) AC
Xét tứ giác CIKH có: góc KIC + góc KHC = 90o + 90o = 180o ( tổng 2 góc đối = 180o )
\(\Rightarrow\) tứ giác CIKH nội tiếp ( đpcm )
b. Ta có: góc CBD = góc CAD ( 2 góc nội tiếp cùng chắn cung DC ) (1)
Xét \(\Delta\) AKC có: KI là đường trung tuyến đồng thời là đường cao
\(\Rightarrow\) \(\Delta\) AKC là tam giác cân tại K \(\Rightarrow\) góc CAK = góc ACK
hay góc CAD = góc ACK (2)
Từ (1), (2) \(\Rightarrow\) góc ACK = góc CBD ( đpcm )
Ta có: ΔABC vuông tại A(gt)
mà ΔBAC nội tiếp (O)
nên O là trung điểm của BC
Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBD vuông tại B có BA là đường cao ứng với cạnh huyền CD, ta được:
\(CA\cdot CD=CB^2\)
\(\Leftrightarrow CA\cdot CD=\left(2R\right)^2=4R^2\)