K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Hỏi đáp Toán

Trước tiên ta chứng minh \(HG=2GO\).

Gọi giao điểm của AM và OH là G'; M là trung điểm của BC.

Xét tứ giác BKCH có CH // BK ( cùng vuông góc với AB ) và BH // CK ( cùng vuông góc với AC ) do đó BKCH là hình bình hành.

=> HK giao BC tại trung điểm mỗi đường, mà M là trung điểm của BC nên M đồng thời là trung điểm của HK.

Xét tam giác AHK có O là trung điểm của AK, M là trung điểm của HK => OM là đường trung bình của tam giác AHK

=> \(\frac{OM}{AH}=\frac{1}{2}\)

Vì OM // AH nên theo định lý Ta-lét ta có:

\(\frac{AG'}{G'M}=\frac{HG'}{G'O}=\frac{AH}{OM}=2\) hay \(\frac{AG'}{G'M}=2\)

Đồng thời vì G là trọng tâm của tam giác ABC nên \(\frac{AG}{GM}=2\)

Do đó \(\frac{AG'}{G'M}=\frac{AG}{GM}\) \(\Rightarrow G\equiv G'\)

Do đó: \(\frac{HG}{GO}=2\) hay \(HG=2GO\) (1)

Kẻ đường cao \(h_a\) từ A đến OH

Ta có \(S_{AHG}=\frac{1}{2}\cdot h_a\cdot HG\)\(S_{AGO}=\frac{1}{2}\cdot h_a\cdot GO\) (2)

Từ (1) và (2) suy ra \(S_{AHG}=2S_{AGO}\) ( đpcm )

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

4 tháng 3 2021

mọi người giúp em với ạ em cần gấp

 

4 tháng 3 2021

.

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CED=góc CAD

góc CDE=góc CAE

mà góc CAD=góc CAE(=góc CBD)

nên góc CED=góc CDE

=>CD=CE

15 tháng 3 2022

lx

15 tháng 3 2022

lỗi 

10 tháng 3 2022

Ta có :

Do BD và CE là các đường cao nên

suy ra góc BEC = góc BDC =90 độ

Xét tứ giác BCDE,có:

góc BEC=góc BDC

vậy BCDE là tứ giác nội tiếp(đpcm)

a: góc ACM=1/2*sđ cung AM=90 độ

b: góc ADB=góc AEB=90 độ

=>ABDE nội tiếp

a) Xét tứ giác KEDC có 

\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối

\(\widehat{KEC}+\widehat{KDC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Tâm của đường tròn này là trung điểm của KC