K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2023

a: NP=NH+HP

=1+4

=5(cm)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH^2=HN\cdot HP\)

=>\(MH^2=1\cdot4=4\)

=>MH=2(cm)

ΔMHP vuông tại H

=>\(HM^2+HP^2=MP^2\)

=>\(MP^2=2^2+4^2=20\)

=>\(MP=2\sqrt{5}\left(cm\right)\)

b:

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MN^2+\left(2\sqrt{5}\right)^2=5^2\)

=>\(MN^2=25-20=5\)

=>\(MN=\sqrt{5}\left(cm\right)\)

Xét ΔMNP vuông tại M có \(cosN=\dfrac{MN}{NP}\)

=>\(cosN=\dfrac{\sqrt{5}}{5}\)

Xét ΔMNP vuông tại M có \(tanP=\dfrac{MN}{MP}\)

=>\(tanP=\dfrac{\sqrt{5}}{2\sqrt{5}}=\dfrac{1}{2}\)

c: Xét ΔMNA vuông tại M có MK là đường cao

nên \(NK\cdot NA=NM^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot NP=NM^2\left(2\right)\)

Từ (1) và (2) suy ra \(NK\cdot NA=NH\cdot NP\)

=>\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)

Xét ΔNKP và ΔNHA có

\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)

\(\widehat{KNP}\) chung

Do đó: ΔNKP đồng dạng với ΔNHA

Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(MH^2=HN\cdot HP\)

\(\Leftrightarrow HP=\dfrac{2.4^2}{1.8}=3.2\left(cm\right)\)

Diện tích tam giác MNP là:

\(S_{MNP}=\dfrac{MH\cdot NP}{2}=\dfrac{2.4\cdot5}{2}=6\left(cm^2\right)\)

4 tháng 8 2021

Áp dụng hệ thức trong tam giác vuông:

`MH^2 =NH.PH`

`=>PH=MH^2 : NH = 2,4^2 : 1,8=3,2(cm)`

`=> NP=NH+PH=5(cm)`

`=> S= 1/2 . MH .NP =6(cm^2)`

9 tháng 9 2021

3\(\sqrt{5}\)

9 tháng 9 2021

con gi nua ko bi thieu de

25 tháng 9 2018

MH =  3 5 cm

6 tháng 10 2021

Sửa đề: Đường cao MH

Áp dụng HTL:

\(MH^2=NH.HP\)

\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)

\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Xét ΔMHN vuông tại H có 

\(\sin N=\dfrac{MH}{MN}\)

nên \(MN=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)

=>\(MP=16\left(cm\right)\)

\(S=8\cdot\dfrac{16\sqrt{3}}{3}=\dfrac{128\sqrt{3}}{3}\left(cm^2\right)\)

Sửa đề: MP=24cm

NP=căn 18^2+24^2=30cm

NH=MN^2/NP=18^2/30=324/30=10,8cm

MH=18*24/30=14,4cm

 

28 tháng 7 2023

loading...

28 tháng 7 2023

(Tự vẽ hình)

- Xét △MNP vuông tại M, áp dụng định lí Pytago:

\(^{NM^2}\)+\(MP^2\)=\(NP^2\)

=\(72^2\)+\(96^2\)=\(NP^2\)

\(NP^2\)=\(72^2\)+\(96^2\)=14400

\(NP\)=\(\sqrt{14400}\)=120cm

 - Xét △MNP vuông tại M, đường cao MH, theo hệ thức lượng ta có:

\(MN^2\)=\(NH.NP\)

\(72^2\)=\(NH.120\)

\(NH\)=\(\dfrac{72^2}{120}\)=43,2 cm

\(MH.NP\)=\(MP.MN\)

⇔ \(MH\)=\(\dfrac{MP.MN}{NP}\)=\(\dfrac{96.72}{120}\)=3,6cm

 

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt