Cho tam giác MNP vuông tại M, đường cao MH. Biết NH=1cm; PH=4cm a) Tính độ dài các đoạn thẳng MH; MP b)Tính cosN; tan P c)Lấy A là điểm bất kì trên cạnh MP (A≠M; A≠P). Gọi K là hình chiếu của M trên NA. Chứng minh rằng: Tam giác NKP đồng dạng với NHA d)Đường thẳng d qua A song song với NP cắt MN tại B. Giao điểm của AN và BP là O. Tia Ax song song với MN cắt BP tại F. Tia By song song với MP cắt NA tại E. Chứng minh rằng AB^2=EF.NP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(MH^2=HN\cdot HP\)
\(\Leftrightarrow HP=\dfrac{2.4^2}{1.8}=3.2\left(cm\right)\)
Diện tích tam giác MNP là:
\(S_{MNP}=\dfrac{MH\cdot NP}{2}=\dfrac{2.4\cdot5}{2}=6\left(cm^2\right)\)
Áp dụng hệ thức trong tam giác vuông:
`MH^2 =NH.PH`
`=>PH=MH^2 : NH = 2,4^2 : 1,8=3,2(cm)`
`=> NP=NH+PH=5(cm)`
`=> S= 1/2 . MH .NP =6(cm^2)`
Sửa đề: Đường cao MH
Áp dụng HTL:
\(MH^2=NH.HP\)
\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)
\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Xét ΔMHN vuông tại H có
\(\sin N=\dfrac{MH}{MN}\)
nên \(MN=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)
=>\(MP=16\left(cm\right)\)
\(S=8\cdot\dfrac{16\sqrt{3}}{3}=\dfrac{128\sqrt{3}}{3}\left(cm^2\right)\)
Sửa đề: MP=24cm
NP=căn 18^2+24^2=30cm
NH=MN^2/NP=18^2/30=324/30=10,8cm
MH=18*24/30=14,4cm
(Tự vẽ hình)
- Xét △MNP vuông tại M, áp dụng định lí Pytago:
\(^{NM^2}\)+\(MP^2\)=\(NP^2\)
=\(72^2\)+\(96^2\)=\(NP^2\)
⇔\(NP^2\)=\(72^2\)+\(96^2\)=14400
⇔\(NP\)=\(\sqrt{14400}\)=120cm
- Xét △MNP vuông tại M, đường cao MH, theo hệ thức lượng ta có:
\(MN^2\)=\(NH.NP\)
\(72^2\)=\(NH.120\)
⇔\(NH\)=\(\dfrac{72^2}{120}\)=43,2 cm
- \(MH.NP\)=\(MP.MN\)
⇔ \(MH\)=\(\dfrac{MP.MN}{NP}\)=\(\dfrac{96.72}{120}\)=3,6cm
a: Xét ΔMNP vuông tại M có
\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)
\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)
\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)
\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)
a: NP=NH+HP
=1+4
=5(cm)
Xét ΔMNP vuông tại M có MH là đường cao
nên \(MH^2=HN\cdot HP\)
=>\(MH^2=1\cdot4=4\)
=>MH=2(cm)
ΔMHP vuông tại H
=>\(HM^2+HP^2=MP^2\)
=>\(MP^2=2^2+4^2=20\)
=>\(MP=2\sqrt{5}\left(cm\right)\)
b:
ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(MN^2+\left(2\sqrt{5}\right)^2=5^2\)
=>\(MN^2=25-20=5\)
=>\(MN=\sqrt{5}\left(cm\right)\)
Xét ΔMNP vuông tại M có \(cosN=\dfrac{MN}{NP}\)
=>\(cosN=\dfrac{\sqrt{5}}{5}\)
Xét ΔMNP vuông tại M có \(tanP=\dfrac{MN}{MP}\)
=>\(tanP=\dfrac{\sqrt{5}}{2\sqrt{5}}=\dfrac{1}{2}\)
c: Xét ΔMNA vuông tại M có MK là đường cao
nên \(NK\cdot NA=NM^2\left(1\right)\)
Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot NP=NM^2\left(2\right)\)
Từ (1) và (2) suy ra \(NK\cdot NA=NH\cdot NP\)
=>\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)
Xét ΔNKP và ΔNHA có
\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)
\(\widehat{KNP}\) chung
Do đó: ΔNKP đồng dạng với ΔNHA