K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

O A B C D M N I

a) Xét \(\Delta\)AOD và \(\Delta\)COB có:

OA = OC ( gt ); ^AOD = ^COB ; OD = OB ( gt )

=> \(\Delta\)AOD = \(\Delta\)COB ( c. g. c) (1)

b) OA = OC ; OB = OD 

=> AB = CD 

(1) => ^OAD = ^OCD => ^DCB = ^BAD 

Xét \(\Delta\)IAB và \(\Delta\)ICD có:

^ABI = ^CDI (  suy ra từ (1) ) ; AB = CD ; ^IAB = ^ICD ( vì ^DCB = ^BAD )

=> \(\Delta\)IAB = \(\Delta\)ICD  ( g.c.g) (2)

Xét \(\Delta\)OIB và \(\Delta\)OID có:

IB = ID ( suy ra từ  (2) ); OI chung ; OB = OD ( gt )

=> \(\Delta\)OIB = \(\Delta\)OID  ( c.c.c)

=> ^IOB = ^IOD => OI là phân giác ^BOD 

=> OI là phân giác ^xOy  (3)

c ) \(\Delta\)AOM = \(\Delta\)COM ( c.c.c) => ^AOM = ^ COM  => OM là phân giác ^AOC   => OM là phân giác ^xOy (4)

\(\Delta\)BON = \(\Delta\)DON  ( c.c.c) => ^BON= ^DON  => ON là phân giác ^BOD   => ON  là phân giác ^xOy  (5)

Từ (3); (4) ; (5) => I; M: N thẳng hàng.

14 tháng 12 2021

sao AOD lại = COB ko cs trên giả thuyết mầ

12 tháng 1 2021
Mn giải giúp em với ạ
29 tháng 4 2018

24 tháng 12 2022

Cho góc nhọn xOy. Trên tia Ox lấy điểm A và C sao cho OA < OC, trên tia Oy lấy điểm B và D sao cho OA = OB ; OC = OD. Gọi E là giao điểm của AD và BC. a) Chứng minh: AD = BC. b) Chứng minh: ∆EAC = ∆EBD. c) Chứng minh: OE là tia phân giác của góc xOy. (ảnh 1)

a) Chứng minh: AD = BC.

Xét ∆OAD và ∆OBC có:

OA = OB (gt);

ˆAODAOD^ chung;

OD = OC (gt)

Do đó ∆OAD = ∆OBC (c.g.c)

Suy ra AD = BC (hai cạnh tương ứng)

b) Chứng minh: ∆EAC = ∆EBD.

Vì ∆OAD = ∆OBC (câu a)

Nên ˆA2=ˆB2A^2=B^2 (hai góc tương ứng)

Mà ˆA1+ˆA2=180oA^1+A^2=180oˆB1+ˆB2=180oB^1+B^2=180o (kề bù)

Do đó ˆA1=ˆB1A^1=B^1.

Mặt khác, OA = OB, OC = OD

Suy ra OC – OA = OD – OB

Do đó AC = BD

Xét ∆EAC và ∆EBD có:

ˆA1=ˆB1A^1=B^1 (cmt);

AC = BD (cmt);

ˆOCB=ˆODAOCB^=ODA^ (vì ∆OAD = ∆OBC)

Do đó ∆EAC = ∆EBD (g.c.g).

c) Chứng minh: OE là tia phân giác của góc xOy.

Vì ∆EAC = ∆EBD (câu b)

Nên AE = BE (hai cạnh tương ứng).

Xét ∆OAE và ∆OBE có:

OA = OB (gt);

Cạnh OE chung;

AE = BE (cmt)

Do đó ∆OAE và ∆OBE (c.c.c)

Suy ra ˆAOE=ˆBOEAOE^=BOE^ (hai góc tương ứng)

Hay OE là phân giác của góc xOy.

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

27 tháng 5 2019

15 tháng 11 2021

 

a; Xét 2 tam giác AOD và COB có

OA=OC(gt)

OB=OD(gt)

góc O chung

⇒ΔAOD=ΔOCD⇒ΔAOD=ΔOCD(c.g.c)

⇒⇒AD=CB(2 cạnh tương ứng)

b; vì OB=OD mà OA=OC ⇒⇒AB=CD

Xét 2 tam giác ABD và CDB có

AB=CD

AD=CB

DB là cạnh chung

⇒⇒ΔABD=ΔCDBΔABD=ΔCDB(c.c.c)

c; tự làm dễ rồi

Xét ΔODB và ΔOCA có

\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\left(\dfrac{3}{6}=\dfrac{4}{8}\right)\)

\(\widehat{O}\) chung

Do đó: ΔODB đồng dạng với ΔOCA

=>\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\)

=>\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)

Xét ΔODC và ΔOBA có

\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)

\(\widehat{O}\) chung

Do đó: ΔODC đồng dạng với ΔOBA

=>\(\dfrac{DC}{BA}=\dfrac{OC}{OA}\)

=>\(\dfrac{DC}{5}=\dfrac{6}{8}=\dfrac{3}{4}\)

=>\(DC=3\cdot\dfrac{5}{4}=\dfrac{15}{4}=3,75\left(cm\right)\)

3 tháng 8 2019