K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

Bn tham khảo tại đây nhé

https://h.vn/hoi-dap/question/85130.html

27 tháng 11 2017

4) Gọi D là trung điểm của CK. 
ΔABC cân ở A có AH là đường cao, đồng thời là đường trung tuyến 
⇒ CH ⊥ FH; H là trung điểm của BC 
⇒ DH là đường trung bình của ΔBCK ⇒ DH // BK. 
I là trung điểm của HK ⇒ DI là đường trung bình của ΔCHK 
⇒ DI // CH ⇒ DI ⊥ FH. 
K là hình chiếu của H lên CF ⇒ HI ⊥ DF 
⇒ I là trực tâm của ΔDFH ⇒ FI ⊥ DH ⇒ FI ⊥ BK.

29 tháng 12 2017

a) diện tích của tam giác ABC là SABC=1/2.AH.BC=1/2.16.12=96 tam giác ABC có M là trung điểm AB N là trung điểm AC nên MN là đường trung bình của tam giác ABC => MN=1/2BC=1/2.12=6 vậy MN=6

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.a) CM: OEFC là hình thangb) CM: OEIC là hình bình hành.c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu...
Đọc tiếp

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!

Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.

a) CM: OEFC là hình thang

b) CM: OEIC là hình bình hành.

c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. 

d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)

 

Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.

a) CM: ADCH là hình chữ nhật.

b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.

c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.

d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)

 

Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.

a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.

b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.

c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)

1
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

a) Xét tứ giác AFCH có 

E là trung điểm của đường chéo AC(gt)

E là trung điểm của đường chéo HF(gt)

Do đó: AFCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AFCH có \(\widehat{AHC}=90^0\)(gt)

nên AFCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: AFCH là hình chữ nhật(cmt)

nên AF//BH và AF=BH(Hai cạnh đối)(1)

Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(Hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra AF//BH và AF=BH

Xét tứ giác ABHF có 

AF//BH(cmt)

AF=BH(cmt)

Do đó: ABHF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo AH và BF cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà O là trung điểm của AH(gt)

nên O là trung điểm của BF

hay B,O,F thẳng hàng(đpcm)

18 tháng 7 2021

a) Xét tứ giác EDCB có ED//BC(gt)

nên EDCB là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang EDCB có ˆB=ˆDCBB^=DCB^(hai góc ở đáy của ΔABC cân tại A)

nên EDCB là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét tứ giác AKCH có 

D là trung điểm của đường chéo AC(gt)

D là trung điểm của đường chéo HK(H và K đối xứng nhau qua D)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AKCH có ˆAHC=900AHC^=900(AH⊥BC)

nên AKCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(gt)

nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)

⇒H là trung điểm của BC

hay HB=HC

mà HC=AK(Hai cạnh đối trong hình chữ nhật AHCK)

nên BH=AK

Xét ΔABC có 

H là trung điểm của BC(cmt)

D là trung điểm của AC(gt)

Do đó: HD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒HD//AB và HD=AB2HD=AB2(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔABC có 

D là trung điểm của AC(gt)

DE//BC(gt)

Do đó: E là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

AE=AB2AE=AB2(2)

Từ (1) và (2) suy ra HD//AE và HD=AE

Xét tứ giác AEHD có 

HD//AE(cmt)

HD=AE(cmt)

Do đó: AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và ED cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AH cắt ED tại F

nên F là trung điểm chung của AH và ED

Xét tứ giác AKHB có 

AK//HB(AK//HC, B∈HC)

AK=HB(cmt)

Do đó: AKHB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà F là trung điểm của AH(cmt)

nên F là trung điểm của BK(đpcm)

a) Xét tứ giác AHCF có 

E là trung điểm của đường chéo AC(gt)

E là trung điểm của đường chéo HF(H đối xứng với F qua E)

Do đó: AHCF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AHCF có \(\widehat{AHC}=90^0\)(gt)

nên AHCF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=HC(Hai cạnh tương ứng)(1)

Ta có: AHCF là hình chữ nhật(cmt)

nên AF//HC và AF=HC(Hai cạnh đối của hình chữ nhật AHCF)(2)

Từ (1) và (2) suy ra BH//AF và BH=AF

Xét tứ giác ABHF có

BH//AF(cmt)

BH=AF(cmt)

Do đó: ABHF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo AH và BF cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà O là trung điểm của AH(gt)

nên O là trung điểm của BF

hay B,O,F thẳng hàng(đpcm)

Xét tứ giác AIHE có 

\(\widehat{AIH}=\widehat{AEH}=\widehat{EAI}=90^0\)

Do đó: AIHE là hình chữ nhật

28 tháng 12 2020

tui chỉ làm phần d thôi nha, mấy câu trên cậu tự chứng minh nhé 

Hình tự vẽ 

Lấy M là trung điểm của CK

mà có I là tđ của HK

suy ra MI là đường trung bình tam giác HKC và MI song song với CH

mà CH lại vuông góc với HF ( tự c/m) nên MI vuông góc với HF 

Xét tam giác HFM có I là trực tâm ( tự ghi rõ ) suy ra FI vuông góc với HM mà có

M là tđ CK, H là tđ BC ( tự c/m) suy ra đường trung bình nên HM song song với BK suy ra đpcm 

tui chỉ ghi qua thui, cậu tự trình bày rõ ràng nhé 

mấy cái tự c/m ko dài đâu, đều hiện lên trên hình cậu vẽ rùi, đều có sẵn chỉ cần vài dòng thui, đừng lười, THI TỐT NHẾ

MAI TUI THI TOÁN VỚI ANH ĐÓ, THANKS VÌ ĐỀ BÀI RẤT HAY NHA.