Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Xét tam giác LMN vuông tại L
Theo định lý Pytago ta có :
LM2+LN2=MN2
402+LN2=582
=> LN2=3364-1600
LN2=1764
=>LN=42
2)
+ Nếu 1 tam giác có bình phương của 1 cạnh bằng tổng các bình phương của 2 cạnh kia thì tam giác đó là tam giâc vuông
+ Tam giác IPK ko phải là tam giác vuông vì nó chưa có đủ yếu tố để xác định đó là tam giác vuông
a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có
ML chung
HL=KL
Do đó: ΔMHL=ΔMKL
b: Xét ΔMHN và ΔMKN có
MH=MK
\(\widehat{HMN}=\widehat{KMN}\)
MN chung
Do đó; ΔMHN=ΔMKN
Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)
hay ΔMKN vuông tại K
a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có
ML chung
HL=KL
Do đó: ΔMHL=ΔMKL
b: Xét ΔMHN và ΔMKN có
MH=MK
\(\widehat{HMN}=\widehat{KMN}\)
MN chung
Do đó: ΔMHN=ΔMKN
Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE