cho hình thang cân ABCD (AB//CD)
a) CMR ACD=BDC
b) Giả sử góc B lớn hơn góc C, kẻ đường cao BH.Chứng minh rằng HB=nửa tổng hai đáy; HC=nửa hiệu hai đáy
ai giải được bài này giúp mình với ạ thx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hình thang ABCD có các đường cao AH và BK. Từ A kẻ đường thẳng song song với BD cắt CD ở E Þ AB = ED.
Chứng minh A C H ^ = 45 0 . Do DEAC vuông cân ở A nên A H = C H = E H = A B + C D 2
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
a: Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
Do đó: ΔADC=ΔBCD
Suy ra: \(\widehat{CAD}=\widehat{DBC}\)
b: Ta có: ΔADC=ΔBCD
nên \(\widehat{ODC}=\widehat{OCD}\)
hay ΔOCD cân tại O
Suy ra: OC=OD
hay OA=OB
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath
a/ Xét tg ACD và tg BDC có
CD chung
^ADC = ^BCD (góc ở đáy hình thang cân)
AD=BC (cạnh bên của hình thang cân)
=> tg ACD = tg BDC (c.g.c)=> ^ACD = ^BDC
b/ Giả sử AB và CD không đổi => tổng và hiệu của chúng không đổi. Mà BH chính là khoảng cách giữa AB và CD có thể thay đổi tuỳ ý
=> Bài toán thiếu dữ kiện