Cho hình vuông ABCD, E là một điểm nằm trong hình vuông sao cho góc EBC=ECB=15 độ; F là một điểm nằm ngoài hình vuông sao cho góc FDC=FCD=60 độ. Chứng minh:
a) tam giác AED là tam giác đều.
b) ba điểm B,E,F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tam giác FCD đều nên FC = DC = CB. Do đó tam giác BCF cân tại C nên \(\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}=\dfrac{180^o-150^o}{2}=15^o=\widehat{EBC}\).
Vậy B, E, F thẳng hàng.
Trúc Giang Bạn cần giải thích đoạn nào vậy?
Tam giác BCF cân tại C nên \(\widehat{FBC}=\widehat{BFC}\).
Do đó \(\widehat{FBC}+\widehat{BFC}+\widehat{FCB}=180^o\Leftrightarrow\widehat{FCB}+2\widehat{FBC}=180^o\Leftrightarrow\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}\).
Do đó \(\widehat{FBC}=\widehat{EBC}\) mà E, F cùng thuộc 1 nửa mf bờ BC nên E, B, F thẳng hàng.
Vì t/g FDC là t/g đều nên DF=DC=FC
Mà DC=AD=AB=BC suy ra FC=BC
Suy ra t/g FCB cân tại C =>góc CFB=góc CBF (1)
Mặt khác có: góc FCB =góc DCB + góc DCF = 900 + 600 =1500
Suy ra : góc CFB + góc CBF =300 (2)
Từ (1) và (2) suy ra : góc CFB=góc CBF =150 (3)
Theo bài ra ta có : góc EBC =150 (4)
Từ (3) và (4) suy ra 3 diểm B ,E ,F thẳng hàng
a, Trong hình vuông ABCD dựng tam giác EMB đều.
MBA^=ABC^−CBE^−EBM^=90o−15o−60o=15oMBA^=ABC^−CBE^−EBM^=90o−15o−60o=15o
Dễ dàng c/m đc:
ΔΔ CEB=ΔΔ BMA (c.g.c)
\RightarrowBMA^=BEC^=150oBMA^=BEC^=150o
\RightarrowBMA^=EMA^=150oBMA^=EMA^=150o
\Rightarrow
ΔΔ EMA=ΔΔ BMA (c.g.c)
\Rightarrow AE=AB
Tương tự c/m đc DE=DC
\Rightarrow DE=AE(1)
Dễ dàng c/m đc DAE^=60o(2)DAE^=60o(2)
Từ (1) và (2) \Rightarrow Tam giác AED đều.
Đội sản xuất của 1 nông trường nhập về 567 bao ngô giống, mỗi bao có 30kg ngô. Người ta chia đều ngô giống đó cho 378 gia đình đẻ trồng ngô vào vụ mùa tới. Hỏi mỗi gia đình nhận được bao nhiêu ki - lô - gam ngô giống?
( help me ! )