Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEM và ΔDFM có
DE=DF
DM chung
EM=FM
Do đó: ΔDEM=ΔDFM
a) XÉT \(\Delta DEM\)VÀ \(\Delta DEN\)
^D CHUNG
DM=DN \(\Rightarrow\Delta DEM=\Delta DEN\left(C-G-C\right)\)=> ^DEM=^DEN
DF=DE
b) VÌ ^DEF=^DFE MÀ ^DEM=^DEN =>^IEF=^IFE \(\Rightarrow\Delta IEF\)CÂN
c) TA CÓ \(\Delta DNM\)CÂN TẠI D NÊN ^DMN=^DNM=\(\frac{180^0-D}{2}\)(1)
TA LẠI CÓ \(\Delta DÈF\)CÂN TẠI D NÊN ^DEF=^DFE=\(\frac{180^0-D}{2}\)(2)
TỪ (1) VÀ (2) => ^DMN=^DFE
MÀ 2 GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ NÊN NM // EF
Cho tam giác DEF có DE=4cm,EF=5cm,DF=6cm.trên cạnh DE lấy điểm M sao cho DM=3cm,trên cạnh DF lấy điểm N sao cho DN=2cm a,CM: DEF đồng dạng DMN b, tính MN
a) Xét ΔDEF và ΔDNM có
\(\dfrac{DE}{DN}=\dfrac{DF}{DM}\left(\dfrac{4}{2}=\dfrac{6}{3}\right)\)
\(\widehat{D}\) chung
Do đó: ΔDEF∼ΔDNM(c-g-c)
a) Xét △DEM và △KFM có
DM=KM(giả thiết)
góc DME=góc KMF(2 góc đối đỉnh)
EM=MF(Vì M là trung điểm của EF)
=>△DEM =△KFM(c-g-c)
=> góc MDE=góc MKF (2 góc tương ứng)
hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF
=>DE//KF
b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ
Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có
HD=HP
HE là cạnh chung
=> △DHE= △PHE(2 cạnh góc vuông)
=> góc DEM=góc PEM
=> EH là tia phân giác của góc DEP
hay EF là tia phân giác của góc DEP
vậy EF là tia phân giác của góc DEP