Cho hình thang ABCD (AB CD. AM cắt BD tại E.
al Nếu BE=6cm; ED=8cm; DM=10cm. Tính độ dài AB?
b/ AC cắt BM ở F. Chứng minh EF//AB.
c/ Đường thắng EF cắt AD, BC ở H và K. Chứng minh HF = 2FK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng định lý Talet:
$\frac{AB}{DM}=\frac{EB}{ED}=\frac{6}{8}=\frac{3}{4}$
$\Rightarrow AB=\frac{3}{4}.DM=\frac{3}{4}.10=7,5$ (cm)
a:
Sửa đề; EA=6cm
Xét ΔEMD và ΔEBA có
góc EMD=góc EBA
góc MED=góc BEA
=>ΔEMD đồng dạng vơi ΔEBA
=>MD/BA=ED/EA
=>10/BA=8/6=4/3
=>BA=7,5cm
b: Xét ΔFMC và ΔFBA có
góc FMC=góc FBA
góc MFC=góc BFA
=>ΔFMC đồng dạng với ΔFBA
=>FM/FB=MC/BA=MD/BA=EM/EA
=>FE//AB
Xét ΔMAB và ΔMCD có
góc MAB=góc MCD
góc AMB=góc CMD
=>ΔAMB đồng dạng với ΔCMD
=>AB/CD=MA/MC=MB/MD
a) Ta có: MN là đường trung bình của hình thang ABCD(AB//CD)
nên MN//AB//CD và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)
hay EN//AB và MF//AB
Xét ΔCAB có
N là trung điểm của BC(gt)
NE//AB(cmt)
Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét ΔCAB có
E là trung điểm của AC(cmt)
N là trung điểm của BC(gt)
Do đó: EN là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)
nên \(EN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔDAB có
M là trung điểm của AD(gt)
MF//AB(cmt)
Do đó: F là trung điểm của BD(Định lí 1 về đường trung bình của tam giác)
Xét ΔDAB có
M là trung điểm của AD(gt)
F là trung điểm của BD(cmt)
Do đó: MF là đường trung bình của ΔDAB(Định nghĩa đường trung bình của tam giác)
nên \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra MF=EN
\(\Leftrightarrow MF+FE=EN+FE\)
\(\Leftrightarrow ME=FN\)(đpcm)
b) Ta có: \(EN=MF=\dfrac{AB}{2}\)(cmt)
nên \(EN=MF=\dfrac{6}{2}=3\left(cm\right)\)
Ta có: \(MN=\dfrac{AB+CD}{2}\)(cmt)
nên \(MN=\dfrac{6+8}{2}=\dfrac{14}{2}=7\left(cm\right)\)
Ta có: MF+FE+EN=MN
\(\Leftrightarrow EF=MN-MF-EN=7-3-3=1\left(cm\right)\)
Vậy: EF=1cm
Xét ΔOAM và ΔOCN có
góc OAM=góc OCN
góc AOM=góc CON
=>ΔOAM đồng dạng vơi ΔOCN
=>AM/CN=OA/OC
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
Do đó: ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD
Xét ΔOMB và ΔOND có
góc OMB=góc OND
góc MOB=góc NOD
=>ΔOMB đồng dạng vơi ΔOND
=>MB/ND=OB/OD=OA/OC=AM/NC
=>MB/MA=ND/NC=2
=>ND=2NC
=>CN/CD=1/3
ko bít