Cho tam giác ABC. Kẻ đường cao BH. Gọi M và N lần lượt là trung điểm của hai cạnh AB và AC; E và F lần lượt là hình chiếu của M và N trên cạnh AC. Chứng tỏ:
a) ME = NF
b) EF = \(\frac{AB}{2}\)
c) Tứ giác MEFN là hình gì? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Gọi G là giao điểm của AH và DE
Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)
Suy ra tam giác GHD cân tại G
Suy ra tam giác NCE cân tại N ⇒ NC = NE (16)
Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.
a: XétΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Ta có: ΔAHC vuông tại H(Gt)
mà HN là đường trung tuyến ứng với cạnh huyền AC(gt)
nên HN=AN
Ta có: ΔAHB vuông tại H(gt)
mà HM là đường trung tuyến ứng với cạnh huyền AB(gt)
nên HM=AM
Xét ΔNAM và ΔNHM có
NA=NH(cmt)
MA=MH(cmt)
NM chung
Do đó: ΔNAM=ΔNHM(c-c-c)
Suy ra: \(\widehat{NAM}=\widehat{NHM}\)(hai góc tương ứng)
mà \(\widehat{NAM}=90^0\)(gt)
nên \(\widehat{NHM}=90^0\)
hay MH\(\perp\)NH(đpcm)
Bạn tự vẽ hình nhé hình này rất dễ thôi :v
a)Xét tam giác cân ABC có:AM là trung tuyến
`=>` AM là đường cao
`=>AM bot BC`
Xét tam giác ABM và tam giác ACM có:
`AM` chung
`hat{AMB}=hat{AMC}=90^o(CMT)`
`BM=MC`(do m là trung điểm)
`=>Delta ABM=Delta ACM(cgc)`
`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:
`BM=CM`(M là trung điểm)
`hat{ABC}=hat{ACB}`(do tam giác ABC cân)
`=>Delta BHM=Delta CKM`(ch-gn)
`=>BH=CK`
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB
hay ABNM là hình thang
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
Câu b là chứng minh EF = \(\frac{AC}{2}\) nha
Mình gõ nhầm xíu
a)
Vì \(\hept{\begin{cases}NF\perp AC\\BH\perp AC\end{cases}}\Rightarrow NF//BH\)
\(\hept{\begin{cases}NF//AB\\NB=NC\end{cases}}\Rightarrow\)NF là đường trung bình
=> \(NF=\frac{1}{2}BH\)
Ta lại có :
\(\hept{\begin{cases}ME\perp AC\\BH\perp AC\end{cases}}\Rightarrow ME//BH\)
\(\hept{\begin{cases}BH//ME\\AM=MB\end{cases}\Rightarrow}\)ME là đường trung bình của tam giác
=> \(ME=\frac{1}{2}BH\)
Vì \(\hept{\begin{cases}NF=\frac{1}{2}BH\\ME=\frac{1}{2}BH\end{cases}}\Rightarrow ME=NF\)
Xong a