Cho tam giác ABC có E là trung điểm của AC ; D là trung điểm của BC . Gọi P là giao điểm của BE và AD. Biết AD = 18cm Thì độ dài của PD = ??? cm
Kb-Ib vs mk nha :))) - Linhlunxinhcute - 2k5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác của đề bài theo trường hợp c-c-c
b) Vì AB // CD => ABC = DCB
Xét tam giác ABC và tam giác DCB theo trường hợp c-g-c
c) Ủa E đâu thuộc DN ???
1:
AB=1/2AC=AM=MC
=>AB=2AE=2EM=MC
Xet ΔABC và ΔAEB có
AB/AE=AC/AB=2
góc A chung
=>ΔABC đồng dạng với ΔAEB
2: AM=AB
=>ΔAMB cân tại A
mà AG là phân giác
nên AG vuông góc BM và AG là đường trung tuyến ứng với cạnh MB
Xét ΔBAM có
BE,AG là trung tuyến
=>G là trọng tâm
3: CM/ME=2
CD/DB=2
=>CM/ME=CD/DB
=>MD//BG
=>MD/BE=CM/CE=2/3
=>MD=2/3BE=BG
=>BDMG làhình bình hành
mà GB=GM(G là trọng tâm của ΔAMB cân tại A)
nên BDMG là hình thoi
bạn tự vẽ hình nhé !
Nối EN, NM, ME. Ta có G là trọng tâm tam giác ABC nên G là giao điểm 3 đường trung tuyến , do đó E, G , C thẳng hàng.(1)
bây giờ chứng minh E,G,D thẳng hàng thì sẽ có C,G,E,D thẳng hàng.
Ta có E là trung điểm AB, N là trung điểm AC suy ra EN là đường trug bình tam giác ABC nên EN =1/2 BC và EN song2 với BC. lại có MC=1/2 BC ( M trug điểm BC)
suy ra EN = CM và EN song2 với CM từ đó ENCM là hình bình hành.
Xét hình bình hành ENCM có D là trung điểm MN suy ra D là trug điểm EC => ED=DC.
Vì G là trọng tâm tam giác ABC nên EG=1/3 EC=2/3ED (vì ED=1/2 EC)
Xét tam gác ENM có ED là trung tuyến , EG=2/3 ED suy ra G là trọng âm tam giác ENM. suy ra EGD thẳng hàng (2)
TỪ 1 và 2 suy ra E,G,D,C thẳng hàng
Bài 5:
Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
Bài 4:
2: Xét hình thang ABCD có
E,F lần lượt là trung điểm của AD,BC
=>EF là đường trung bình của hình thang ABCD
=>EF//AB//CD và \(EF=\dfrac{AB+CD}{2}\)
a: Ta có: \(AM=\dfrac{1}{2}AC\)
\(AB=\dfrac{1}{2}AC\)
Do đó: AM=AB
Xét ΔABC và ΔAEB có
\(\dfrac{AB}{AE}=\dfrac{AC}{AB}\left(=2\right)\)
\(\widehat{BAC}\) chung
Do đó: ΔABC~ΔAEB