Cho tam giác ABC cân tại A. Trên nửa mặt phẳng bờ BC không chứa A lần lượt vẽ các tia Bx cà Cy sao cho Bx ⊥ BA; Cy ⊥ CA. Gọi D là giao điểm của Bx và Cy. Chứng minh:
a) ΔABD = ΔACD;
b) DA là tia phân giác của góc BDC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tam giác ABC cân tại A nên AB = AC, từ đó tam giác ABD = tam giác ACD (cạnh huyền - cạnh góc vuông).
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Xét 2 tam giác ABD vuông tại B và tam giác ACD vuông tại C có:
+ Chung cạnh huyền AD
+ AB=AC vì tam giác ABC cân tại A
Vậy 2 tam giác ABD bằng tam giác ACD theo trường hợp (cạnh huyền - cạnh góc vuông)
a) Xét tam giác vuông ABM và tam giác vuông NCA có:
NC=AB( gt)
CA=BM ( gt)
=> Tam giác ABM = Tam giác NCA
b) Xét tam giác vuông NCA và tam giác vuông BAC có:
AC chung
NC=BA
=> Tam giác NCA =Tam giác BAC
=> ^NAC =^BCA
mà hai góc trên ở vị trí so le trong
=> NA//BC (1)
c) Xét tam giác vuông ABC và tam giác vuông BMA có:
AB chung
AC=BM
=> Tam giác vuông ABC = Tam giác vuông BMA
=> ^MAB=^ABC
mà hai góc trên ở vị trí so le trong
=> MA//CB (2)
từ (1) , (2) => N, A, M thẳng hàng
Ta lại có: NA=AM ( Tam giác ABM =tam giác NCA)
=> A là trung điểm MN
a) Xét Δ ABD vuông tại B và Δ ACD vuông tại C có:
+ AD chung.
+ AB = AC (Tam giác ABC cân tại A).
\(\Rightarrow\Delta ABD=\Delta ACD\) (cạnh huyền - cạnh góc vuông).
b) \(\Delta ABD=\Delta ACD\left(cmt\right).\Rightarrow\) \(\widehat{BDA}=\widehat{CDA}\) (2 góc tương ưng).
\(\Rightarrow\) DA là tia phân giác của \(\widehat{BDC}.\)