K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAIC vuông tại A và ΔBID vuông tại I có 

AC=BD

AI=BI

Do đó:ΔAIC=ΔBID

b: Xét tứ giác ACBD có 

AC//BD

AC=BD

Do đó: ACBD là hình bình hành

Suy ra: Hai đường chéo AB và CD cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của AB

nên I là trung điểm của CD

hay C,I,D thẳng hàng

c: Ta có: ACBD là hình bình hành

nên AD//BC và AD=BC

6 tháng 2 2022

vẽ hình nữa cậu oii

15 tháng 7 2017


Lời giải:

Ax // By Thì góc BAx và góc ABy ở vị trí trong cùng phía nên chúng bù nhau.

Do đó, \(\widehat{B\text{Ax}}+\widehat{ABy}=180^0\)hay \(a+4a=180^0\)

Khi đó ta có \(5a=180\)nên \(a=36^0\)

Vậy với \(a=36^0\)thì \(\text{Ax}\)//\(By\)

15 tháng 11 2023

a:\(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^0+\widehat{BAC}\)

Do đó: \(\widehat{DAC}=\widehat{BAE}\)

Xét ΔDACvà ΔBAE có

AD=AB

\(\widehat{DAC}=\widehat{BAE}\)

AC=AE

Do đó: ΔDAC=ΔBAE

=>DC=BE

b: ΔDAC=ΔBAE

=>\(\widehat{ADC}=\widehat{ABE};\widehat{ACD}=\widehat{AEB}\)

\(\widehat{CEB}+\widehat{ECD}\)

\(=\widehat{CEB}+\widehat{ECA}+\widehat{DCA}\)

\(=\widehat{ECA}+\widehat{AEB}+\widehat{CEB}\)

\(=\widehat{ECA}+\widehat{AEC}=90^0\)

=>BE\(\perp\)CD

14 tháng 9 2021

Xét ΔEAC và ΔBAD có :

AD = AC ( gt )

ˆCAE=ˆDAB( hai góc đối đỉnh )

AE = AB ( gt )

nên ΔEAC=ΔBAD(c.g.c)

=> BD = CE ( hai cạnh tương ứng )

4 tháng 11 2016

ket ban voi to

4 tháng 11 2016

duoc roi toi chap nhan

22 tháng 6 2019

Xét \(\Delta EAC\) và \(\Delta BAD\) có :

AD = AC ( gt )

\(\widehat{CAE}=\widehat{DAB}\)( hai góc đối đỉnh )

AE = AB ( gt )

nên \(\Delta EAC=\Delta BAD\left(c.g.c\right)\)

=> BD = CE ( hai cạnh tương ứng )

1 tháng 9 2021

a) Trên tia đối tia MA lấy điểm F sao cho AM = AF (*)

Xét tam giác BFM và tam giác ACM có:

AM = FM (theo *)

Góc BMF = góc AMC (2 góc đối đỉnh)

BM = CM (vì M là trung điểm của BC)

=> Tam giác BFM = tam giác CAM (c.g.c)

=> AC = BF (2 cạnh tương ứng)

Vì AC = AE (gt) nên AE = BF

Ta có: góc F = góc CAM (vì tam giác BFM = tam giác CAM)

Mà 2 góc này ở vị trí so le trong

=> BF // AC (dấu hiệu nhận biết)

=> Góc BAC + góc ABF = 180 độ (2 góc trong cùng phía)

Mà góc BAC + góc DAE = 180 độ 

=> Góc DAE = góc ABF

Xét tam giác ABF và tam giác ADE có:

AB = AD (gt)

Góc DAE = góc ABF (chứng minh trên)

AE = BF (2 cạnh tương ứng)

=> Tam giác ADE = tam giác BAF (c.g.c)

=> AF = DE (2 cạnh tương ứng)

Lại có: AM = AF : 2 => AM = DE : 2   (đpcm)

b) Gọi giao điểm của AM và DE là N

Ta có: tam giác ADE = tam giác BAF (chứng minh trên)

=> Góc D = góc BAF (2 góc tương ứng)

Mà góc BAF + góc DAN = 180 độ - góc BAD = 180 độ - 90 độ = 90 độ

=> Góc D + góc DAN = 90 độ

=> Tam giác ADN vuông tại N

hay AM _|_ DE   (đpcm)