K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

a) Trên tia đối tia MA lấy điểm F sao cho AM = AF (*)

Xét tam giác BFM và tam giác ACM có:

AM = FM (theo *)

Góc BMF = góc AMC (2 góc đối đỉnh)

BM = CM (vì M là trung điểm của BC)

=> Tam giác BFM = tam giác CAM (c.g.c)

=> AC = BF (2 cạnh tương ứng)

Vì AC = AE (gt) nên AE = BF

Ta có: góc F = góc CAM (vì tam giác BFM = tam giác CAM)

Mà 2 góc này ở vị trí so le trong

=> BF // AC (dấu hiệu nhận biết)

=> Góc BAC + góc ABF = 180 độ (2 góc trong cùng phía)

Mà góc BAC + góc DAE = 180 độ 

=> Góc DAE = góc ABF

Xét tam giác ABF và tam giác ADE có:

AB = AD (gt)

Góc DAE = góc ABF (chứng minh trên)

AE = BF (2 cạnh tương ứng)

=> Tam giác ADE = tam giác BAF (c.g.c)

=> AF = DE (2 cạnh tương ứng)

Lại có: AM = AF : 2 => AM = DE : 2   (đpcm)

b) Gọi giao điểm của AM và DE là N

Ta có: tam giác ADE = tam giác BAF (chứng minh trên)

=> Góc D = góc BAF (2 góc tương ứng)

Mà góc BAF + góc DAN = 180 độ - góc BAD = 180 độ - 90 độ = 90 độ

=> Góc D + góc DAN = 90 độ

=> Tam giác ADN vuông tại N

hay AM _|_ DE   (đpcm)

A B C D M

Bài làm

a) Vì M là trung điểm của BC

=> MB=MC 

Xét tam giác AMC và tam giác DMB, ta có:

MA=MD ( giả thiết )

\(\widehat{AMC}=\widehat{BMD}\)( vì hai góc đối đỉnh )

BM=MC ( chứng minh trên )

=> Tam giác AMC=tam giác DMB ( c.g.c )

Vì tam giác AMC=tam giác DMB 

=> AC=BD ( 2 cạnh tương ứng )

Vậy AC=BD ( đpcm )

b) Vì tam giác AMC = tam giác DMB 

=> \(\widehat{CAM}=\widehat{MDB}\) ( hai góc tương ứng )

Mà \(\widehat{CAM}\)và \(\widehat{MDB}\)ở vị trí so le trong 

=> AC // BD

Vậy AC // BD ( đpcm )

# Chúc bạn học tốt #

19 tháng 12 2015

x y E D A B C 1 2 3 F 1 2

GT :Ax vuông góc AC ; Ay vuông góc AB ; AD=AC  ;  AE=AB ; AH vuông góc DC 

KL:C/m BD=EC ; C/m BD vuông góc EC ; ME=MD

a/   

Ax vuông góc AC 

=> Â1=900

Ay vuông góc với AB

=>Â2=900  

=>Â12

mà góc EAC=Â23

     góc DAB=Â13

=> góc EAC= góc DAB 

Xét \(\Delta\)EAC và \(\Delta\)DAB có :

AD=AC(gt)

AE=AB(gt)

góc EAC= góc DAB (cmt)

=> \(\Delta\)EAC =  \(\Delta\)DAB 

=> DB=EC ( hai cạnh tương ứng )

b đang nghĩ

c xem lại đề /

 

 

 

30 tháng 7 2019

a, ta có : BAx = 1300                                                                        y E F B C D x A

               ABD = 500 

-> BAx + ABD = 1300 + 500 = 1800

=> BAx và ABD là cặp góc cùng phía bù nhau

=> Ax // BD

b, Ax // BD => C1 = A45 ( So le trong )

=> C1 + A3 = A45 + A3 = A345 = 1300

     Góc B = 50 độ

Vậy B + C+ A3 = 180 độ 

=> Tổng 3 góc trong tam giác ABC = 1800

c, A12345 = 180 0

     A345 = 1300 

=> A12 = 500

AF là phân giác của A12 => A1 = A2 = 500/2 = 250

AD là phân giác của A345 => A34 = A5 = 650

=> A3 + A34 = 250 + 650 = 900

ta có : FAD = 900 

=> AF vuông góc với AC

22 tháng 11 2015

 Gọi A' là điểm đối xứng của A qua M, bạn tự vẽ hình nhé), xét tam giác ADE và tam giác BA'A, có 
AB = AD, BA' = AC = AE, góc EAD = EAC + CAD = 90 độ + 90 độ - BAC = 180 độ - BAC = ABA' 
Do đó hai tam giác này nbằng nhau theo TH c.g.c 
==> DE = AA', mà BACA' là hình bình hành nên AM = 1/2 AA' , đpcm 
Dựa vào tíh chất hai tam giác bằng nhau có hai cặp cạnh tương ừng vuông góc thì cặp cạnh còn lại cũng vuông góc, ta CM được AM vuông góc với DE

tick nha

22 tháng 11 2015

Cho_tam_gi_c_ABC_tr_n_n_a_m_t_ph_ng_b.png (600×340)

tick nha

19 tháng 2 2019

Hình tự kẻ nhé

a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC

b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM

c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.

19 tháng 2 2019

bạn kẻ hình luôn đi

30 tháng 6 2015

a) E thuộc AB => AE CŨNG VUÔNG GÓC VỚI AC TẠI A => GÓC EAC=90

XÉT TAM GIÁC ABC VÀ TAM GIÁC ADE:

AB=AD

2 GÓC VUÔNG = NHAU

AC=AE

=> 2 TAM GIÁC = NHAU (C.G.C) => BC=DE

B) GỌI DE GIAO BC TẠI H. TAM GIÁC ABC=ADE => GÓC BCA= GÓC AED

TAM GIÁC AED: GÓC AED+ GÓC ADE=90

MÀ GÓC ADE= GÓC HDC ( ĐỐI ĐỈNH). GÓC BCA= GÓC AED

=> GÓC HDC+GÓC BCA=90 <=> TAM GIÁC DHC VUÔNG TẠI H. HAY DE VUÔNG GOC BC TẠI H

C) TAM GIÁC ABC VUÔNG TẠI A => GÓC B + GÓC C=90.

4B=5C => B=5/4 C. THAY B=5/4 C VÀO <=> 5/4 C+C=90 <=> C=40

MÀ GÓC AED= GÓC C (CMT) => GÓC AED=40

30 tháng 6 2015

HÌNH NÈ. LẦN SAU KẺ HÌNH NHA

4 tháng 10 2019

có vẽ hình ko

29 tháng 7 2019

a) Xét tam giác BAD và tam giác BAC, có:

          góc BAD = góc BAC = 90o              (gt)

          BA: cạnh chung

          góc ABD = góc ABC                (Vì AB là p/g của BC)

Nên: Tam giác BAD = tam giác BAC                      ( g - c - g)

=> BD = BC                     (2 cạnh t/ư)

Ta có: AC vuông góc với AB                            (gt)

           AC vuông góc với CF                            (gt)

   => AB // CF                    (Quan hệ từ _|_ -> //)

Nên: góc ABC = góc FCB                         (2 góc so le trong = nhau)

Lại có: CD vuông góc với CF                       (gt)

            BF vuông góc với CF                       (gt)

=> CD // BF                     (Quan hệ từ _|_ -> //)

Hay: AC // BF

Do đó: góc ACB = góc FBC                       (2 góc so le trong = nhau)

Xét tam giác BFC và tam giác CAB, có:

          góc FBC = góc ACB                         (cmt)

          BC: cạnh chung

          góc FCB = góc ABC                         (cmt)

Nên: tam giác BFC = tam giác CAB                              ( g - c - g)

   => góc BAC = góc CFB                        ( 2 góc t/ư)

 Mà: góc BAC = 90o

Do đó: góc CFB = góc BAC = 90o

Xét tam giác BEF và tam giác BCF, có:

          góc EBF = góc CBF                       (Vì BF là p/g của góc CBE)

          BF: cạnh chung

          góc BFE = góc BFC = 90o                       (cmt)

Nên: tam giác BEF = tam giác BCF                      ( g - c - g)

Vậy góc BCF = góc BEF                        ( 2 góc t/ư)

Hay: góc BCE = góc BEC                        (đpcm)

b) Trong tam giác ABC, có:

            góc A + góc B + góc C = 180o                   (T/c tổng 3 góc trong 1 tam giác)

Vậy ........

c)Ta có: góc BFC = 90o                   (cm câu a)

Vậy BF vuông góc với CE                         (đpcm)

Mk ko chắc chắn ở câu b nhé!