K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

a) Vì MA,MB là tiếp tuyến \(\Rightarrow MA=MB\) và MO là phân giác \(\angle AMB\Rightarrow\Delta MAB\) cân tại M \(\Rightarrow OM\bot AB\)

Xét \(\Delta IAC\) và \(\Delta IBA:\) Ta có: \(\left\{{}\begin{matrix}\angle IAC=\angle IBA\\\angle BIAchung\end{matrix}\right.\)

\(\Rightarrow\Delta IAC\sim\Delta IBA\left(g-g\right)\Rightarrow\dfrac{IA}{IB}=\dfrac{IC}{IA}\Rightarrow IA^2=IB.IC\)

b) Vì \(IA=IM\Rightarrow IM^2=IB.IC\Rightarrow\dfrac{IM}{IB}=\dfrac{IC}{IM}\) 

Xét \(\Delta IMC\) và \(\Delta IBM:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{IM}{IB}=\dfrac{IC}{IM}\\\angle BIMchung\end{matrix}\right.\)

\(\Rightarrow\Delta IMC\sim\Delta IBM\left(c-g-c\right)\Rightarrow\angle IMC=\angle IBM=\angle BDC\)

undefined

5 tháng 6 2021

thêm câu kết luận giùm mình nhé,mình quên mất

 

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CDA/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội...
Đọc tiếp

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
A/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếp

B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
câu này hơi dài , cảm ơn mấy bạn vì công đọc , sai thì thôi, đúng thì ok  , nhưng cảm ơn mn vì đọc cái bài dài này nhá :))

0

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA^2=MC*MD=MH*MO

=>MC/MO=MH/MD

=>ΔMCH đồng dạng với ΔMOD

=>góc MCH=góc MOD

=>góc HOD+góc HCD=180 độ

=>HODC nội tiếp

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB

b: góc CAE=1/2*180=90 độ

Xét ΔOAM vuông tại A và ΔCAS vuông tại A có

góc AOM=góc ACS

=>ΔOAM đồng dạng với ΔCAS

30 tháng 5 2017

Đáp án C

Xét tam giác AOB có AO = OB = R nên tam giác AOB cân tại O (1)

Theo tính chất hai tiếp tuyến cắt nhau có OM là đường phân giác của góc AOB (2)

Từ (1) và (2) suy ra: OM là đường trung trực của AB.

Ta có điểm N thuộc đường trung trực của AB nên NA = NB

Suy ra, tam giác NAB là tam giác cân tại N

a) Xét tứ giác OAMC có 

\(\widehat{OAM}\) và \(\widehat{OCM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OAMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: góc OAM+góc OCM=180 độ

=>OAMC nội tiếp

b: CE//BD

=>góc AKM=góc AEC=góc ACM

=>AKCM nội tiếp

=>A,K,C,M cùng nằm trên 1 đường tròn

=>góc OKM=90 độ

=>K là trung điểm của BD