K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay \(AH=6\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{\sqrt{3}}{2}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{1}{2}\)

\(\tan\widehat{B}=\cot\widehat{C}=\sqrt{3}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{\sqrt{3}}{3}\)

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

27 tháng 9 2021

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : AH2=BH.CH⇒x(25−x)=144⇔x2−25x+144=0AH2=BH.CH⇒x(25−x)=144⇔x2−25x+144=0

(x−9)(x−16)=0(x−9)(x−16)=0 ⇔[x=9x=16⇔[x=9x=16 (tm)

Nếu BH = 9 cm thì CH = 16 cm⇒AB=√AH2+BH2=√92+122=15(cm)⇒AB=AH2+BH2=92+122=15(cm)

AC=√AH2+CH2=√122+162=20(cm)AC=AH2+CH2=122+162=20(cm)

Nếu BH = 16 cm thì CH = 9 cm

⇒AB=√AH2+BH2=√122+162=20(cm)⇒AB=AH2+BH2=122+162=20(cm)

AC=√AH2+CH2=√92+122=15(cm)

Theo đề, ta có:

\(HB\left(25-HB\right)=12^2=144\)

\(\Leftrightarrow HB^2-25HB+144=0\)

\(\Leftrightarrow\left(HB-9\right)\left(HB-16\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}HB=9\\HC=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\\\left\{{}\begin{matrix}AB=20\left(cm\right)\\AC=15\left(cm\right)\end{matrix}\right.\end{matrix}\right.\)

23 tháng 7 2021

Áp dụng hệ thức lượng trong tam giác vuông có:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AB^2}=\dfrac{1}{AH^2}-\dfrac{1}{AC^2}=\dfrac{1}{225}\)

\(\Leftrightarrow AH^2=225\Rightarrow AH=15\) (cm)

\(HB=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9\) (cm)

\(sinB=\dfrac{AH}{AB}=\dfrac{12}{15}=\dfrac{4}{5}\)

Vậy...

23 tháng 7 2021

AB = 15

Hb = 9

sinB = 0,8

Đặt BH=x; CH=y

Theo đề, ta có: x+y=25 và xy=144

=>x,y là các nghiệm của phương trình là;

a^2-25a+144=0

=>a=9 hoặc a=16

TH1: BH=9; CH=16

AB=căn 9*25=15cm

AC=căn 16*20=20cm

TH2: BH=16; CH=9

AB=căn 16*25=20cm

AC=căn 9*25=15cm

16 tháng 7 2021

nhờ các bạn giải giúp hộ mình vs ạ mình cần gấp

1 tháng 10 2023

Xét tam giác ABC vuông tại A ta có:

\(AB^2=BC\cdot BH\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{2}{3}\right)^2}{12}=\dfrac{1}{27}\left(cm\right)\)  

Mà: \(BC=CH+BH\)

\(\Rightarrow CH=12-\dfrac{1}{27}=\dfrac{323}{27}\left(cm\right)\)  

\(AC^2=BC\cdot CH\)

\(\Rightarrow AC=\sqrt{BC\cdot CH}=\sqrt{12\cdot\dfrac{323}{27}}=\dfrac{2\sqrt{323}}{3}\left(cm\right)\) 

Mà: \(AH\cdot BC=AB\cdot AC\)

\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{\dfrac{2}{3}\cdot\dfrac{2\sqrt{323}}{3}}{12}=\dfrac{\sqrt{323}}{27}\left(cm\right)\)

13 tháng 10 2021

Áp dụng HTL:

\(\dfrac{1}{AH^2}=\dfrac{1}{51,84}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{144}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AC^2}=\dfrac{1}{81}\Rightarrow AC=9\left(cm\right)\)

Áp dụng PTG \(BC=\sqrt{BA^2+AC^2}=15\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o