K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay \(AH=6\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{\sqrt{3}}{2}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{1}{2}\)

\(\tan\widehat{B}=\cot\widehat{C}=\sqrt{3}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{\sqrt{3}}{3}\)

30 tháng 9 2021

tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=92+122=225
  BC=15cm
* AH.BC=AB.AC
  AH.15=9.12
AH.15=108
  AH=7,2cm
\(sinB=\dfrac{4}{5};cosB=\dfrac{3}{5};tanB=\dfrac{4}{3};cotanb=\dfrac{3}{4}\)
\(=>sinC=\dfrac{3}{5};cosC=\dfrac{4}{5};tanC=\dfrac{3}{4};cotanC=\dfrac{4}{3}\)

30 tháng 9 2021

b)
tam giác ABC vuông tại A có
AC.AK=AH2
HB.HC=AH2
=>AC.AK=HB.HC
\(=>\dfrac{AC}{HC}=\dfrac{HB}{AK}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=21\\AC^2=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{21}\left(cm\right)\\AC=2\sqrt{7}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2\sqrt{7}}{7}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{\sqrt{21}}{7}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2\sqrt{7}}{\sqrt{21}}=\dfrac{2\sqrt{3}}{3}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{\sqrt{21}}{2\sqrt{7}}=\dfrac{\sqrt{3}}{2}\)

28 tháng 7 2018

ai giúp mik vs : cảm ơn mn nhé >3

29 tháng 7 2018

ai giúp mik đi huhu

20 tháng 6 2019

A B C H M

Ta có \(BC=BH+HC=9+16=25\)

Vì \(\Delta ABC\)vuông tại A có AM là trung tuyến \(\Rightarrow AM=MB=MC=\frac{BC}{2}=\frac{25}{2}\)

Ta có \(HM=MB-BH=\frac{25}{2}-9=\frac{7}{2}\)

\(sin\widehat{HAM}=\frac{HM}{MA}=\frac{7}{2}:\frac{25}{2}=\frac{7}{25}\)

\(cos\widehat{HAM}=\frac{AH}{AM}=12:\frac{25}{2}=\frac{24}{25}\)

\(tan\widehat{HAM}=\frac{HM}{HA}=\frac{7}{2}:12=\frac{7}{24}\)

\(cot\widehat{HAM}=\frac{HA}{HM}=\frac{24}{7}\)

17 tháng 7 2018

A B C H

a)  Áp dụng định lý Pytago ta có:

            \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(BC^2=5^2+12^2=169\)

\(\Leftrightarrow\)\(BC=13\)

b)  Áp dụng hệ thức lượng ta có:

      \(AB.AC=BC.AH\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=4\frac{8}{13}\)

        \(AB^2=BH.BC\)

\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=\frac{25}{13}\)

c)    \(sinB=\frac{AC}{BC}=\frac{12}{13}\)             \(tanB=\frac{AC}{AB}=\frac{12}{5}\)

      \(cosB=\frac{AB}{BC}=\frac{5}{13}\)               \(cotB=\frac{AB}{AC}=\frac{5}{12}\)