Cho hìnhthang ABCD có AB//DC và BD là phân giác của góc ABC. Cho DAB =115 ; BDC= 50
a)Tính số đo góc ADC và ADB.
b)Tính sốđo góc ABC và BCD
c)Tia phân giác của góc xBC và BCy cắt nhau tại E. Tính số đo góc BEC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: AD=DM
DM<DC
=>AD<DC
a: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
=>DB=DC
b: Xét ΔDAB vuông tại A và ΔDHC vuông tại H có
DB=DC
góc ADB=góc HDC
=>ΔDAB=ΔDHC
=>góc HCD=góc ABD=góc BCA
=>CA là phân giác của góc BCH
c: Xét ΔBMC có
BH vừa là đường cao, vừa là phân giác
=>ΔBMC cân tại B
=>BH là trung trực của MC
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>BA=BM và DA=DM
=>BD là trung trực của AM
c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có
DA=DM
góc ADK=góc MDC
=>ΔDAK=ΔDMC
=>DK=DC
=>ΔDKC cân tại D
Xét ΔBKC có
KM,CA là đường cao
KM cắt CA tại D
=>D là trực tâm
=>BD vuông góc CK tại N
Lời giải:
a) Áp dụng định lý Pitago có:
$AD=\sqrt{BD^2-AB^2}=5\sqrt{3}$
$BC=\sqrt{CD^2-BD^2}=\sqrt{20^2-10^2}=10\sqrt{3}$
Xét tam giác $BAD$ và $DBC$ có:
$\widehat{A}=\widehat{B}=90^0$
$\frac{AB}{AD}=\frac{BD}{BC}$ (bạn tự thay giá trị vô)
$\Rightarrow \triangle BAD\sim \triangle DBC$ (c.g.c)
$\Rightarrow \widehat{ABD}=\widehat{BDC}$. Hai góc này ở vị trí so le trong nên $AB\parallel CD$
$\Rightarrow $ABCD$ là hình thang.
b) Từ độ dài các cạnh ta có:
Xét tam giác $ABD$ và $BDC$ có:
$\frac{AB}{BD}=\frac{BD}{DC}=\frac{1}{2}$
$\frac{AB}{AD}=\frac{BD}{BC}=\frac{3}{4}$
$\frac{BD}{AD}=\frac{DC}{BC}=\frac{3}{2}$
$\Rightarrow \triangle ABD\sim \triangle BDC$ (c.c.c)
$\Rightarrow \widehat{ABD}=\widehat{BDC}$.
Hai góc này ở vị trí so le trong nên $AB\parallel CD$ nên $ABCD$ là hình thang.
a: Xét ΔABE và ΔFCE có
góc EBA=góc ECF
EB=EC
góc BEA=góc CEF
=>ΔABE=ΔFCE
=>EA=EF
=>E là trung điểm của AF
b: Xét ΔDAF có
DE vừa là phân giác, vừa là trung tuyến
=>ΔDAF cân tại D
=>DA=DF=DC+CF=DC+AB
c: góc BAE=góc AFD
=>góc BAE=góc DAE
=>AE là phân giác góc DAB