K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

A B C M

a)Xét tam giác AMB và tam giác AMC có:

AM chung

AB=AC(do tam giác ABC cân tại A)

BM=MC(đường trung tuyến AM cắt BC tại M)

=>tam giác AMB = tam giác AMC (c.c.c)

b) tam giác AMB = tam giác AMC => góc AMB=góc AMC (2 góc tương ứng)

mà góc AMB+góc AMC=180o (2 góc kề bù) => góc AMB=góc AMC=90o =>AM vuông góc với BC

c) Có: BM=MC=1/2 BC (đường trung tuyến AM cắt BC tại M) => BM=(1/2).10=5(cm)

Áp dụng định lí Py-ta-go cho tam giác vuông ABM ta được: AM2+BM2=AB2 <=> AM2+52=82

<=>AM2=82-52=64-25=39 <=> AM\(=\sqrt{39}\)

21 tháng 5 2021

a) Xét ΔABC có AB=AC=5 

=> ΔABC cân tại A

ta có AM là trung tuyến => AM là đường phân giác của góc A (tc Δ cân)

=>\(\widehat{B}=\widehat{C}\)(tc)

Xét ΔABM và ΔACM có

AB=AC gt

có AM là trung tuyến => BM=CM

\(\widehat{B}=\widehat{C}\) (cmt)

=>ΔABM = ΔACM (cgc)

b) có ΔABC cân 

mà AM là trung tuyến => AM là đường cao (tc Δ cân)

c) ta có AM là trung tuyến => 

M là trung điểm của BC 

=> BM=CM=\(\dfrac{BC}{2}=\dfrac{6}{2}=3\)cm

Xét ΔABM có AM là đường cao => \(\widehat{AMB}=\)90o

=> AM2+BM2=AB2

=> AM2+32=52

=> AM =4 cm

d) Xét ΔBME và ΔCMF có

\(\widehat{MEB}=\widehat{MFC}=\)90o (ME⊥AB,MF⊥AC)

BM=CM (cmt)

\(\widehat{B}=\widehat{C}\)

=>ΔBME = ΔCMF (ch-cgv)

=>EM=FM( 2 góc tương ứng)

Xét ΔMEF có 

EM=FM (cmt)

=> ΔMEF cân tại M

21 tháng 5 2021

đố ai làm đc 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Xét \(\Delta AMB\) và \(\Delta AMC\).có:

AB = AC ( do tam giác ABC cân tại A )

MB = MC ( do M là trung điểm BC )

AM là cạnh chung

=>\(\Delta AMB\) =\(\Delta AMC\) (c.c.c)

=>\(\widehat {ABC}\)=\(\widehat {ACB}\)( 2 góc tương ứng)

26 tháng 4 2017

A B C M

a/ Câu này không chỉ có 1 cách mình trình bày!

Xét tam giác ABM và tam giác ACM có:

   góc BAM = góc CAM (gt)

   AM: chung

  AB = AC (tam giác ABC cân tại A)

=> tam giác ABM = tam giác ACM (c.g.c)

b/ Vì tam giác ABC cân tại A => AM vừa là đường phân giác vừa là đường cao

PS: Học tính chất tam giác cân là làm được

AH
Akai Haruma
Giáo viên
29 tháng 4 2018

Lời giải:

a)

Vì tam giác $ABC$ cân tại $A$ nên $AB=AC$ và \(\widehat{ABC}=\widehat{ACB}\) hay \(\widehat{ABM}=\widehat{ACM}\)

Xét tam giác $AMB$ và $AMC$ có:

\(\left\{\begin{matrix} \widehat{ABM}=\widehat{ACM}\\ BM=CM\\ AB=AC\end{matrix}\right.\Rightarrow \triangle AMB=\triangle AMC(c.g.c)\)

b) Từ hai tam giác bằng nhau trên suy ra \(\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0\)

Suy ra \(\widehat{AMB}=\widehat{AMC}=90^0\Rightarrow AM\perp BC\)

Do đó áp dụng định lý Pitago:
\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AB^2=AM^2+(\frac{BC}{2})^2\)

\(\Leftrightarrow 13^2=AM^2+5^2\Rightarrow AM=12\) (cm)

Theo tính chất đường trung tuyến thì \(AG=\frac{2}{3}AM=\frac{2}{3}.12=8\) (cm)

4 tháng 5 2018

Fan vuơng túân khải à 😒😁

20 tháng 3 2020

A B C M 1 2

a) Xét tam giác AMB và AMC có:

AM chung 

AB=AC (tam giác ABC cân tại A)

\(\widehat{A_1}=\widehat{A_2}\)(AM là phân giác)
=> \(\Delta AMB=\Delta AMC\left(cgc\right)\)(đpcm)

b) Có tam giác ABC cân tại A (gt); AM là trung tuyến tam giác ABC

Vì trong tam giác cân đường trung tuyến trùng với đường cao

=> AM là đường cao tam giác ABC 

=> AM _|_ BC (đpcm)

Bài làm

a) Xét tam giác AMB và tam giác AMC có:

^MAB = ^MAC ( Do AM phân giác )

AB = AC ( Do ∆ABC cân )

^B = ^C ( Do ∆ABC cân )

=> ∆AMB = ∆AMC ( g.c.g )

b) Cách 1: Vì ∆AMB = ∆AMC ( cmt )

=> ^AMB = ^AMC 

Mà ^AMB + ^AMC = 180° ( hai góc kề bù )

=> ^AMB = ^AMC = 180°/2 = 90°

=. AM vuông góc với BC.

Cách 2: Vì tam giác ABC cân tại A

Mà AM là tia phân giác

=> AM đồng thời là đường cao.

=> AM vuông góc với BC .

c) Vì ∆ABC cân tại A

Mà AM vừa là đường phân giác, vừa là đường cao.

=> AM là đường trung tuyến. 

=> BM = MC 

Mà BM + MC = BC = 6

=> BM = MC = 6/2 = 3 ( cm )

Xét tam giác AMB vuông tại M có:

Theo định lí Pytago có:

AB² = AM² + BM²

=> AM² = AB² - BM²

Hay AM² = 5² - 3²

=> AM² = 25 - 9

=> AM² = 16

=> AM = 4 ( cm )

d) Xét tam giác ABC có:

AM vuông góc với BC

AH vuông góc với AC

Mà AM cắt AH tại H

=> H là trực tâm.

=> CH vuông góc với AB . ( Đpcm )

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
a.

Do tam giác $ABC$ cân tại $A$ nên $AB=AC$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$

$AM$ chung

$BM=CM$ (do $M$ là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b.

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$. Mà $AM$ nằm giữa $AB, AC$ nên $AM$ là tia phân giác $\widehat{BAC}$

Cũng từ tam giác bằng nhau phần a suy ra:
$\widehat{AMB}=\widehat{AMC}$

Mà $\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0$

$\Rightarrow \widehat{AMB}=180^0:2=90^0$

$\Rightarrow AM\perp BC$

c.

$AM\perp BC, M$ là trung điểm $BC$ nên $AM$ là đường trung trực của $BC$

$\Rightarrow$ mọi điểm $E\in AM$ đều cách đều 2 đầu mút B,C (theo tính chất đường trung trực)

$\Rightarrow EB=EC$

$\Rightarrow \triangle EBC$ cân tại $E$.

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Hình vẽ:

12 tháng 11 2021

a)Vì M là trung điểm BC (gt)

=> MB = MC

Xét △AMB và △AMC có

AB=AC (gt)

AM : cạnh chung

MB=MC (cmt)

=> △AMB = △AMC (c.c.c)

b) Vì △ABC cân tại A (AB=AC) có AM là trung tuyến

=> AM là đường cao 

=> AM ⊥ BC

12 tháng 11 2021

Cảm ơn bạn ! ^^