Bài 6. Cho tam giác ABC vuông tại A a) Nếu AB = 9cm; BC = 15 cm. Tính AC và so sánh các góc của tam giác ABC. b) Trên tia đối của tia CA lấy điểm D sao cho CA = CD , Qua D kẻ đường thẳng d vuông góc với AD. Gọi E là giao của BC và d. Qua C kẻ đường thẳng vuông góc với BE cắt đường thẳng d tại F. Chứng minh tam giác ABC- tam giác DEC và tam giác BEF cân. c) So sánh BF và AD d) Tìm điều kiện của tam giác ABC để tam giác EFB đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
\(BC=HC+HB=16+9=25\left(cm\right)\)
\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)
\(\Rightarrow AB=15\left(cm\right)\)
\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)
Bài 6:
\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)
\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC)
\(BC=BH+HC=2+2=4\left(cm\right)\)
Chu vi Δ ABC :
\(4+4+4=12\left(cm\right)\)
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Bài 3 : Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm, BC = 25cm. Tính AB, AH, BH, CH.
\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=3,24\left(cm\right)\\HC=\dfrac{AC^2}{BC}=10,24\left(cm\right)\\AH=\sqrt{3,24\cdot10,24}=5,76\left(cm\right)\end{matrix}\right.\)
Bài 3:
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔHBA~ΔABC
b: Ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=9^2+12^2=225\)
=>\(BC=\sqrt{225}=15\left(cm\right)\)
Xét ΔBAC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot15=9^2=81\)
=>\(BH=\dfrac{81}{15}=5,4\left(cm\right)\)
c: ta có: HK\(\perp\)AB
AC\(\perp\)AB
Do đó: HK//AC
Xét ΔCAB có HK//AC
nên \(\dfrac{HK}{AC}=\dfrac{BH}{BC}\)
=>\(\dfrac{HK}{12}=\dfrac{5.4}{15}=\dfrac{54}{150}=\dfrac{9}{25}\)
=>\(HK=12\cdot\dfrac{9}{25}=\dfrac{108}{25}=4,32\left(cm\right)\)
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)
=> AM là trung tuyến
Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)
=> AM là đường cao (TC các đường trong tam giác cân)
Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)
EM là đường cao (AM là đường cao, E thuộc AM)
=> Tam giác EBC cân tại E
M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét tam giác AMB vuông tại M (AM \(\perp BM\))
AB2 = AM2 + BM2 (định lý Py ta go)
Thay số: AB2 = 82 + 62
<=> AB2 = 100
<=> AB = 10 (cm)
Vậy AB = 10 (cm)
Bài 1:
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AH2 = BH . HC (hệ thức lượng)
<=> 122 = 9 . HC
<=> HC = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)
Vậy HC = 16 (cm)
Ta có: BC = BH + HC = 9 + 16 = 25 (cm)
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AB2 = BH . BC (hệ thức lượng)
<=> AB2 = 9 . 25
<=> AB2 = 225
<=> AB = 15 (cm)
Vậy AB = 15 (cm)
a: AC=căn 15^2-9^2=12cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔABC vuông tại A và ΔDEC vuông tại D có
CA=CD
góc ACB=góc DCE
=>ΔABC=ΔDEC
=>CB=CE
Xét ΔFBE có
FC vừa là đường cao, vừa là trung tuyến
=>ΔFBE cân tại F