Giúp mình vớiiiii ~~~
Tam giác ABC cân tại A, trung tuyến AM. Chứng minh:
a) AM là tia phân giác của góc A
b) AM vuông góc với BC
c) Tính AM biết: AB = 13cm; BC = 10cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ và cơ bản mà nhỉ:vv
a) Xét ∆ABM và ∆ACM:
AB=AC (∆ABC cân tại A)
BM=CM (AM là trung tuyến)
\(\widehat{ABM}=\widehat{ACM}\) (∆ABC cân tại A)
=> ∆ABM=∆ACM (c.g.c)
b) Theo câu a: ∆ABM=∆ACM
=> \(\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (2 góc kề bù)
=> \(\widehat{AMB}=\widehat{AMC}=90^o\)
=> AM vuông góc với BC
c) M là trung điểm của BC
=> \(MB=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\)
Áp dụng định lý Py-ta-go vào ∆ABM, ta có:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow5^2=AM^2+3^2\Rightarrow AM^2=5^2-3^2=16=4^2\)
\(\Rightarrow AM=4\) (cm)
Vậy AM=4cm.
b) Cm theo cách khác:
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM\(\perp\)BC(đpcm)
a) Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về đường trung bình của tam giác)
mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên AM=BM
Xét ΔMBA có MA=MB(cmt)
nên ΔMBA cân tại M(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{MAB}=\widehat{MBA}\)(hai góc ở đáy)
\(\Leftrightarrow\widehat{MAB}=\widehat{HBA}\)(1)
Ta có: ΔAHB vuông tại H(AH\(\perp\)BC tại H)
nên \(\widehat{HBA}+\widehat{HAB}=90^0\)(hai góc nhọn phụ nhau)(2)
Ta có: \(\widehat{BAM}+\widehat{BAD}=\widehat{MAD}\)(tia AB nằm giữa hai tia AM,AD)
hay \(\widehat{BAM}+\widehat{BAD}=90^0\)(3)
Từ (1), (2) và (3) suy ra \(\widehat{BAH}=\widehat{BAD}\)
mà tia AB nằm giữa hai tia AH,AD
nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: ΔAMB=ΔAMC
=>góc MAB=góc MAC
=>AM là phân giác của góc BAC
ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
c: góc BAM=góc CAM=40/2=20 độ
góc B=góc C=90-20=70 độ
d: Xét ΔAEM và ΔAFM có
AE=AF
góc EAM=góc FAM
AM chung
=>ΔAEM=ΔAFM
=>ME=MF
=>ΔMEF cân tại M
a: góc DAB=90 độ-góc BAM=góc CAM
mà góc CAM=góc C
nên góc DAB=góc C
=>góc DAB=góc HAB
=>AB là phân giác của góc DAH
b: AB vuông góc AC
=>AC là phân giác góc ngoài tại đỉnh A của ΔADH
=>BD/BH=AD/AH=CD/CH
=>BD*CH=BH*CD
a: BC=2MB=90cm
Xét ΔAMB có MD là phân giác
nên AD/AM=DB/BM
=>AD/30=DB/45
=>AD/2=DB/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{2}=\dfrac{DB}{3}=\dfrac{AD+DB}{2+3}=\dfrac{50}{5}=10\)
Do đó: AD=20(cm); DB=30(cm)
b: Xét ΔAMB có MD là phân giác
nên AD/DB=AM/MB=AM/MC(1)
Xét ΔAMC có ME là phân giác
nên AE/EC=AM/MC(2)
Từ (1) và (2) suy ra AD/DB=AE/EC
hay DE//BC
xét tam giác ABM và ACM có :
AB=AC ( tam giác ABC cân tại A )
AM là cạnh chung (gt)
BM=MC (AM là trung tuyến của tam giác ABC )
=> Tam giác ABM = tam giác ACM (c-c-c)
=> góc BAM = góc MAC (2-g-t-ứ)
=> AM là tia phân giác của gócA
b) vì tam giác ABM= tam giác ACM (cmt)
=> góc AMB= góc AMC (2-g-t-ứ)
mà góc AMB+ góc AMC = 180 độ (kề bù )
=> góc AMB = góc AMC = góc BMC/2 =90 độ
=> AM vuông góc vs BC